
128

Compilation of Sparse Array Programming Models

RAWN HENRY∗,Massachusetts Institute of Technology, USA

OLIVIA HSU∗, Stanford University, USA

ROHAN YADAV, Stanford University, USA

STEPHEN CHOU,Massachusetts Institute of Technology, USA

KUNLE OLUKOTUN, Stanford University, USA

SAMAN AMARASINGHE,Massachusetts Institute of Technology, USA

FREDRIK KJOLSTAD, Stanford University, USA

This paper shows how to compile sparse array programming languages. A sparse array programming language

is an array programming language that supports element-wise application, reduction, and broadcasting of

arbitrary functions over dense and sparse arrays with any fill value. Such a language has great expressive

power and can express sparse and dense linear and tensor algebra, functions over images, exclusion and

inclusion filters, and even graph algorithms.

Our compiler strategy generalizes prior work in the literature on sparse tensor algebra compilation to

support any function applied to sparse arrays, instead of only addition and multiplication. To achieve this, we

generalize the notion of sparse iteration spaces beyond intersections and unions. These iteration spaces are

automatically derived by considering how algebraic properties annotated onto functions interact with the fill

values of the arrays. We then show how to compile these iteration spaces to efficient code.

When compared with two widely-used Python sparse array packages, our evaluation shows that we

generate built-in sparse array library features with a performance of 1.4× to 53.7× when measured against

PyData/Sparse for user-defined functions and between 0.98× and 5.53× when measured against SciPy/Sparse

for sparse array slicing. Our technique outperforms PyData/Sparse by 6.58× to 70.3×, and (where applicable)

performs between 0.96× and 28.9× that of a dense NumPy implementation, on end-to-end sparse array

applications. We also implement graph linear algebra kernels in our system with a performance of between

0.56× and 3.50× compared to that of the hand-optimized SuiteSparse:GraphBLAS library.

CCS Concepts: • Software and its engineering→ Source code generation; Domain specific languages.

Additional Key Words and Phrases: Sparse Array Programming, Sparse Arrays, Compilation

ACM Reference Format:
Rawn Henry, Olivia Hsu, Rohan Yadav, Stephen Chou, Kunle Olukotun, Saman Amarasinghe, and Fredrik

Kjolstad. 2021. Compilation of Sparse Array Programming Models. Proc. ACM Program. Lang. 5, OOPSLA,
Article 128 (October 2021), 29 pages. https://doi.org/10.1145/3485505

∗
Both authors contributed equally to the paper

Authors’ addresses: Rawn Henry, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA, 02139, USA,

rawn@mit.edu; Olivia Hsu, Stanford University, 353 Jane Stanford Way, Stanford, CA, 94305, USA, owhsu@stanford.edu;

Rohan Yadav, Stanford University, 353 Jane Stanford Way, Stanford, CA, 94305, USA, rohany@cs.stanford.edu; Stephen

Chou, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA, 02139, USA, s3chou@csail.mit.edu; Kunle

Olukotun, Stanford University, 353 Jane Stanford Way, Stanford, CA, 94305, USA, kunle@stanford.edu; Saman Amarasinghe,

Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA, 02139, USA, saman@csail.mit.edu; Fredrik Kjolstad,

Stanford University, 353 Jane Stanford Way, Stanford, CA, 94305, USA, kjolstad@stanford.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART128

https://doi.org/10.1145/3485505

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

https://doi.org/10.1145/3485505
https://doi.org/10.1145/3485505

128:2 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

1 INTRODUCTION

Arrays are fundamental data structures that let us represent collections of numbers, tabular data,
grids embedded in Euclidean space, tensors, and more. They naturally map to linear memory and
it is unsurprising that they have been the central data structure in languages built for numerical
computation since Fortran [Backus et al. 1957] and APL [Iverson 1962]. In fact, Python became
prevalent in computational science, data analytics, and machine learning partially due to the
introduction of the NumPy array programming library [Harris et al. 2020].

An array programming model is a programming model whose expressions operate on arrays
as a whole through element-wise operations, broadcasts, and reductions over dimensions. From
APL [Iverson 1962] introduced in 1960 to NumPy [Harris et al. 2020] today, array programming
languages have played a prominent role in our programs. For example, NumPy permits element-wise
operations and reductions with any user-de�ned function, broadcasting, and slicing.

A sparse array is an array where many components have the same value, known as a�ll value .
Sparse arrays are becoming increasingly important as the need for numerical computation across
large, sparsely populated systems increases in scienti�c computing, data analytics, and machine
learning. They can be used to model sparse matrices and tensors [Virtanen et al. 2020], sparse
grids [Hu et al. 2019], and even graphs [Mattson et al. 2013]. For example, sparse arrays can
represent the number of friends shared by every pair of people (the sparsity arises because most
people share no friends), the set of nodes to exclude in each step of breadth-�rst search (Section 8.3),
or black-and-white MRI images (Section 8.4.1).

Therefore, there is a need for a sparse array programming model as a counterpart to�and gener-
alization of�dense array programming models. In fact, at the time of writing, the roadmap [SciPy
2021] of the ubiquitous SciPy library [Virtanen et al. 2020] calls directly for a sparse NumPy as one
of �ve goals. The PyData/Sparse project has responded with an implementation [Abbasi 2018], but it
relies on data transformation to implement the signi�cant generality of sparse array programming
and therefore runs signi�cantly slower than what is possible.

Table 1. Features in our sparse array programming model compared to those in related programming models.

Paradigm

Supported Functions Data Representation

Slicing
¹¸ •�º Any semiring Any Dense Sparse Any #

of dims.¹^ •_º • ” ” ” foo, ” ” ” Zero �ll Any �ll

Dense Array Programming (NumPy) 4 4 4 4 8 8 4 4
Dense Tensor Algebra 4 8 8 4 8 8 4 4
Sparse Tensor Algebra (TACO) 4 8 8 4 4 8 4 8
Sparse Linear Algebra 4 8 8 4 4 8 8 8
Sparse LA on Any Semiring (GraphBLAS) 4 4 8 4 4 8 8 4
Sparse Array Programming (This Work) 4 4 4 4 4 4 4 4

In this paper, we present the �rst sparse array programming model compiler that can fuse and
compile any expression involving sparse and dense arrays with arbitrary (implicit) �ll values, where
the operators and reductions can be any function. The array expression� 8 9= ¹� � 8 9

8 9 º � : � 8 9is an
example of a computation that cannot be expressed in sparse tensor algebra (since it uses operations
that are not additions or multiplications) and that cannot be expressed in dense array programming
(if the inputs�• �• and� are too large to store without compression). Table 1 and Fig. 1 show how
our proposed sparse programming model is a superset of the programming models of NumPy dense
array programming, TACO sparse tensor algebra, and the GraphBLAS [Mattson et al. 2013] graph
algorithm library. In order to execute arbitrary functions, we generalize the compilation theory
of Kjolstad et al. [2017] to support any sparse iteration space. We have also extended the sparse

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

Compilation of Sparse Array Programming Models 128:3

iteration theory to support generating code to compute on sliced windows of data, which allows
for operating on subsets of sparse arrays in place. In addition, we built an API for de�ning these
functions and for declaring their properties. Our technical contributions are:

(1) A generalization of sparse iteration space theory to include any sparse iteration space, instead
of only those that can be described by intersections and unions.

(2) Code generation to support any sparse iteration space for arbitrary user-de�ned functions.
(3) Derivation of sparse iteration spaces from functions decorated with mathematical properties.
(4) Extension of sparse arrays to allow any �ll value (not just 0) for compressed entries.
(5) Generalization of iteration spaces to allow iteration over sub-array slices of sparse arrays.

Fig. 1. Comparison of programming models.

We evaluate these contributions by
comparing against implementations
of sparse array primitives in popu-
lar and state-of-the-art sparse array
programming libraries like SciPy and
PyData/Sparse, as well as in larger
applications like image processing
and graph processing. Our evalua-
tion shows a normalized speedup of
0.98� to 5.63� compared to SciPy/S-
parse for sub-array slicing and be-
tween 1.4� and 43.4� compared to
PyData/Sparse for universal func-
tions. Furthermore, we demonstrate our technique's ability to fuse computation with a performance
improvement of 12.7� to 43.4� for fused universal functions when measured against PyData/S-
parse. In the context of graph kernels, our system performs between 0.56� and 3.50� that of a
hand-optimized application-speci�c baseline system, SuiteSparse:GraphBLAS. For practical array
algorithms, we outperform PyData/Sparse by between 6.4� to 70.3� , and the relative performance
of NumPy compared to our system is between 0.96� to 28.93� when a dense implementation is
feasible.

2 MOTIVATION

Array programming is a fundamental computation model that supports a wide variety of features,
including array slicing and arbitrary element-wise, reduction, and broadcasting operators. However,
current dense array implementations cannot store and process the increasingly large and sparse
data emerging from applications like machine learning, graph analytics, and scienti�c computing.
Sparse tensor algebra, on the other hand, is a powerful tool that allows for multilinear computation
on tensors�higher-order matrices and vectors. Multi-dimensional arrays can be represented as
tensors, which means that sparse tensor algebra allows for computation on sparse arrays, but there
are limitations to the existing sparse tensor algebra model.

Tensor algebra computation and reductions are only de�ned across additions and multiplications.
Element-wise addition� = � ¸ � takes the union of non-zero input values and element-wise
multiplication � = � � � takes the intersection, as illustrated in Fig. 2a. However, there are
situations where the user would want to perform more general computation. One example is
� 8 9= ¹� � 8 9

8 9 º � : � 8 9, which raises� to the power of� (power) and �lters the result by the logical
inverse of� . Arbitrary functions likepowerare not expressible using sparse tensor algebra since
they cannot be de�ned by combining the intersection (multiplication) or union (addition) of non-
zero input values, as shown in Fig. 2. Sparse tensor algebra also limits the de�nition of sparsity to

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

128:4 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

U

1 1 ¸ 2 2 0

� �

U

0 1 � 2 0 0

� �

(a) Add (union) and multiply (intersection)
computation space with 0 compression

U

1 0

0

12

0 0
0

1

�

� �

(b) Masked power with 0
compression of the result�

U

1 0

0

12

0 0
0

1

�

� �

(c) Masked power with 1
compression of the result�

Fig. 2. Computation spaces of traditional tensor algebra operators (a) versus arbitrary function computation

for the masked power example:� 8 9 = ¹�
� 8 9
8 9 º � : � 8 9with 0-value (b) and 1-value (c) compression of� .

Color-filled regions require the computation denoted with black text, and white-filled regions are ignored.

Fig. 3. Overview of the sparse array compiler system. Gray components are new contributions of this work.

having a signi�cant number of zeros that can be compressed away (see Fig. 2b). Ourpowerexample
motivates the need to compress out other values instead�namely 1 since10 � 1 = 1 (see Fig. 2c).
Furthermore, the� 8 9 = ¹� � 8 9

8 9 º � : � 8 9example is motivated by applications like medical image
processing and graph algorithms, which often perform computations that apply �lters and masks
(like the �: � 8 9sub-expression). Generalizing tensor algebra to any function requires formalizing
the function's properties and computational behavior. Finally, tensor algebra expressions are also
restricted to computation on entire tensors, even though it can be useful to extract and compute on
sub-arrays. These limitations motivate us to generalize concepts from sparse tensor algebra and
dense array programming to propose a sparse array programming model and a compilation-based
system that realizes it.

3 OVERVIEW

We implemented the sparse array programming model and sparse array compilation as extensions
to the open-source sparse tensor algebra compiler framework TACO [Kjolstad et al. 2017], as
depicted in Fig. 3. Our extension is open-source and publicly available at https://github.com/tensor-
compiler/taco/tree/array_algebra. Like the TACO compiler, our sparse array compiler takes an
algorithm description, a format language [Chou et al. 2018], and a scheduling language [Senanayake
et al. 2020].

Unlike the TACO compiler, which compiles a tensor algebra language [Kjolstad et al. 2017],
the input algorithm description for our sparse array compiler is a sparse array programming
model, further described in Section 4. The programming model supports applying any functions
across sparse arrays through a new language we callarray index notation(see Section 4.2) and
compressing out any value from the sparse arrays through an extended format language (see
Section 4.1). Array index notation uses sparse tensors to represent sparse arrays and allows the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

Compilation of Sparse Array Programming Models 128:5

description of any universal function along with its mathematical properties, which is detailed
in Section 4.3. Additionally, computations in array index notation can be performed on sparse
sub-arrays using sparse array slicing and striding, as also detailed in Section 4.2. The combination
of sparse array representations and their �ll values, array index notation, sparse array slicing,
and user-de�ned functions forms the sparse array programming model. Figs. 4 and 5 show how
programmers can express complex computations using this programming model1.

Arbitrary user-de�ned functions are speci�ed by a description of the function's computation and
iteration pattern. The iteration pattern describes how the compiler should iterate through values of
the input array space, de�ned directly through a set algebra composed of intersections, unions, and
complements of sparse array coordinates. Instead of providing an explicit iteration pattern, users
may provide mathematical properties of the function which the sparse array compiler uses, along
with �ll values of the input tensors, to automatically derive an iteration pattern (see Section 4.3).
We describe these generalized iteration spaces and property derivations for generalized functions
in Section 5.

The sparse array compiler uses the descriptions of generalized iteration spaces to create an
extension of the iteration lattice intermediate representation (IR) described by Kjølstad [2020] to
simplify loop and case-statement generation for an input sparse tensor computation. We describe
the necessary generalizations to the iteration lattice IR in Section 6 to represent iteration over any
iteration space, not just those described by intersection and union expressions. The sparse array
compiler uses the generalized iteration lattice to generate low-level code that performs iteration
over any iteration space. We describe how to lower an iteration lattice into low-level code as well
as how to generate code that operates on slices of tensors in Section 7. Fig. 6 shows an example of
optimized code that the sparse array compiler can generate using these techniques.

Finally, in Section 8 we not only evaluate our sparse array compiler against an existing sparse
array programming library that provides as much generality as our system, but also against special
purpose libraries that hand-code implementations of speci�c sparse array programs.

4 SPARSE ARRAY PROGRAMMING MODEL

In this section, we describe the features of a general sparse array programming model through a
programming language we callarray index notationthat supports complex computations on sparse
arrays. Array index notation generalizes the conventional tensor index notation by relaxing the
de�nition of sparse arrays and supporting a wider range of operations on sparse arrays.

4.1 Sparse Arrays and Fill Values

Array index notation operates on multi-dimensional arrays. A multi-dimensional array can be
viewed as a map from sets of (integer) coordinates to their corresponding values, which may be of
any data type (e.g., �oating-point values, integers, etc.).

An array is sparse if many of its components have the same value, which we refer to as the
array's �ll value . For instance, an array that encodes distances between directly-connected points
in a road network (with two points having a distance of1 if they are not directly connected by
a road) is very likely sparse since most pairs of points in the network are not directly connected,
meaning most components in the array would be1 . This distance array can be said to have a �ll
value of1 , while all other (i.e., non-in�nite) values in the array are itsde�ned values.

Sparse arrays can be e�ciently stored in memory using various data structures (formats) that omit
all (or at least most) of the arrays' �ll values. Fig. 7 shows two examples of sparse two-dimensional
array (i.e., matrix) formats. The coordinate list (COO) format stores the row/column coordinates

1Example code using the PyData/Sparse API can be found in Appendix A.2 in the supplemental materials2.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

128:6 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

1 // Define a dense vector format
2 // and a sparse vector format
3 // with fill values of 0.
4 Format dv({dense}, 0);
5 Format sv({compressed}, 0);
6
7 // Declare inputs to be sparse
8 // vectors and declare output
9 // to be a dense vector.

10 Tensor<int> a(N, dv);
11 Tensor<int> b(N, sv);

12 Tensor<int> c(N, sv);
13
14 // Define computation that computes
15 // element-wise GCD of two vectors.
16 IndexVar i;
17 a(i) = gcd(b(i), c(i));
18
19 // Perform computation by generating
20 // and executing code in Fig. 6.
21 std::cout << a << std::endl;

Fig. 4. C++ code that uses our sparse array compiler to compute the element-wise
greatest common divisor (GCD) of two sparse vectors.

1 def gcd(x,y):
2 x,0 => { return abs(x); }
3 0,y => { return abs(y); }
4 x,y => {
5 x = abs(x);
6 y = abs(y);
7 while (x != 0) {
8 int t = x;
9 x = y % x;

10 y = t;
11 }
12 return y;
13 }
14 iteration_space:
15 f x < 0g [f y < 0g

Fig. 5. A function that imple-
ments the GCD operation. It con-
tains optimized implementations
for the cases wherex ory is0, and
the iteration space is explicitly de-
fined using iteration algebra.

1 int pb = b_pos[0];
2 int pc = c_pos[0];
3 while (pb < b_pos[1] &&
4 pc < c_pos[1]) {
5 int ib = b_crd[pb];
6 int ic = c_crd[pc];
7 int i = min(ib, ic);
8 if (ib == i && ic == i) {
9 int x = b_vals[pb];

10 int y = c_vals[pc];
11 x = abs(x);
12 y = abs(y);
13 while (x != 0) {
14 int t = x;
15 x = y % x;
16 y = t;
17 }
18 a_vals[i] = y;
19 } else if (ib == i) {

20 int x = b_vals[pb];
21 a_vals[i] = abs(x);
22 } else {
23 int y = c_vals[pc];
24 a_vals[i] = abs(y);
25 }
26 pb += (ib == i);
27 pc += (ic == i);
28 }
29 while (pb < b_pos[1]) {
30 int x = b_vals[pb];
31 a_vals[i] = abs(x);
32 pb++;
33 }
34 while (pc < c_pos[1]) {
35 int y = c_vals[pc];
36 a_vals[i] = abs(y);
37 pc++;
38 }

Fig. 6. Code that our technique generates to compute08 = gcd¹18•28º,
assuming1 and2 are sparse vectors with zeros compressed out.

and value of every de�ned value in the array, while the compressed sparse row (CSR) format
additionally compresses out the row coordinates by using a positions array to track which de�ned
values belong to each row. Chou et al. [2018, 2020] showed how a format language can precisely
describe a wide range of sparse array formats in a way that lets compilers generate e�cient code
to compute using the arrays stored in those formats. However, this language assumes that sparse
arrays always have a �ll value of 0, which, as the distance array example shows, is not always true.

We generalize the data representation language to support arbitrary �ll values (such as1 and 1)
by requiring that the compressed value be speci�ed as part of the sparse array format description.
Fig. 7b, for example, shows how both CSR and COO can be speci�ed to have �ll values of 1. Array
components that are not explicitly stored are calledimplicit �ll values, and components that are
explicitly stored but also equal the �ll value are calledexplicit �ll values.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

Compilation of Sparse Array Programming Models 128:7

(a) CSR matrix with a fill value of 0 (b) CSR and COO matrices with a fill value of 1

Fig. 7. Examples of varying sparse array formats with di�erent fill values.

(a) Windowing example (b) Striding example

Fig. 8. Array index notation supports computations on slices of sparse arrays.

4.2 Array Index Notation

As with tensor index notation, computations on multi-dimensional arrays can be expressed in array
index notation by specifying how each component of the result array should be computed in terms
of components of the input arrays. Element-wise addition of two three-dimensional arrays, for
instance, can be expressed as� 8 9: = � 8 9: ¸ � 8 9:, which speci�es that each component of the result
array � should be computed as the sum of its corresponding components in the input arrays� and
� . Array index notation can also express computations that reduce over components of operand
arrays along one or more dimensions. For example,~8 =

Í
9� 8 9expresses a computation that

de�nes each component of~ to be the sum of all components in the corresponding row of� . The
full syntax of array index notation can be found in Appendix A.2 in the supplemental materials2.

Array index notation extends tensor index notation in two ways. First, array index notation allows
programmers to de�ne arbitrary functions (on top of addition and multiplication) and to use these
functions in computations. So, for instance, a programmer can de�ne a functionxor that computes
the exclusive or of three scalar inputs. The programmer may then use this function for element-wise
computation with three-dimensional arrays, which can be expressed as� 8 9: = xor¹� 8 9:• � 8 9:• � 8 9:º.
User-de�ned functions can also be used in reductions. For example, assumingmin is a binary
function that returns the smallest argument as output, the statement~8 = min9 � 8 9expresses a
computation that returns the minimum value in each row of a two-dimensional array. Section 4.3
describes how to de�ne custom array index notation functions.

Second, array index notation allows users to slice and compute with subsets of sparse arrays.
For instance, as Fig. 8a shows, the statement� 8 9= � 8¹0:2º9¹0:2º ¸ � 8¹1:3º9¹2:4º speci�es a computation
that extracts2 � 2 sub-arrays from� and� and element-wise adds the sub-arrays, producing a
2 � 2 result array� . Array index notation also supports strided accesses of sparse arrays. For
instance, as Fig. 8b shows, the statement08 = 18¹0:8:2º ¸ 28¹0:8:2º speci�es computation that extracts

2A link to the supplemental materials can be found here.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

128:8 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

and element-wise adds the components with even-valued coordinates from1 and2. (This slicing
notation corresponds to the standard Python syntaxx[lo:hi:st] , which accesses an arrayx from
coordinatelo to non-inclusive coordinatehi with stride st .) Slicing operations in array index
notation can be viewed semantically as �rst extracting the sliced array into a new array where each
dimension ranges from 0 to the size of the slice, and then using that new array in the rest of the
computation. However, just as in dense array programming, slicing operations should be oblivious
to the underlying data structures used and should not result in unnecessary data movement or
reorganization. Slicing operations should instead adapt the implementation of the array index
notation statement to the desired slicing operation and format of the sparse array. Section 7.3
describes our technique to emit e�cient code to slice sparse arrays.

4.3 Generalized Functions

1 def bitwise_and(x,y):
2 x,y => {
3 return x & y;
4 }
5 properties:
6 commutative
7 annihilator=0

Fig. 9. A function that imple-
ments the bitwise-and opera-
tion decorated with algebraic
properties. If the fill values of
x and y are 0, then the iter-
ation space for this function
will be an intersection.

Programmers can de�ne custom functions that can be used to ex-
press complex sparse array computations in array index notation.
Programmers specify the semantics of a custom function by providing
an implementation that, given any (�xed) number of scalar inputs,
computes a scalar result. Function implementations are written in a
C-like intermediate language that provides standard arithmetic and
logical operators, mathematical functions found in the C standard
library, and imperative constructs such asif -statements and loops.
Figs. 5 and 9 illustrate how users can specify the semantics of simpler
functions like bitwise-and as well as more complex functions like the
greatest common divisor (GCD) function, which is implemented using
the Euclidean algorithm.

A user may optionally specify, for each combination of �ll value
and de�ned value inputs, how the function can be more e�ciently
computed for that speci�c combination of inputs. For example, lines
2�3 in Fig. 5 shows how a programmer can specify that, when either argument is zero, thegcd
function simply has to return the value of the other argument. Using these additional speci�cations,
our technique can generate code like in Fig. 6, which computes the element-wise GCD of two
input vectors without having to explicitly invoke the Euclidean algorithm whenever one input is
guaranteed to be zero (see lines 19�25 and 29�38).

To support e�cient computing on sparse arrays with a custom function, the user must also
de�ne the subset of components in the input arrays that could return a value other than the result
array's �ll value. This can be done explicitly in a language we de�ne callediteration algebra, which
we describe in Section 5. Fig. 5 shows how a user can de�ne the iteration algebra to specify that the
gcd function may return a non-zero result only if at least one input is non-zero. Sections 6.2 and 7
explain how our technique can then use this iteration algebra to generate the code in Fig. 6, which
computes the element-wise GCD by strictly iterating over the de�ned values in vectors1 and2.

Instead of explicitly specifying iteration algebras for custom functions, users may also annotate
functions with any subset of four prede�ned properties from which our technique can infer
optimized iteration algebras:

� Commutative: A function is commutative if the order in which arguments are passed to
the function does not a�ect the result. Arithmetic addition is an example of a commutative
function, sinceG¸ ~ = ~ ¸ Gfor any Gand~.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

Compilation of Sparse Array Programming Models 128:9

¹0•0º

¹1•0º

¹2•0º

¹0•1º

¹1•1º

¹2•1º

¹0•2º

¹1•2º

¹2•2º

¹0•3º

¹1•3º

¹2•3º

(a) Dense iteration space, with all
points present.

¹0•0º ¹0•1º

¹2•1º

¹1•2º

¹2•3º

(b) Sparse iteration space, with
some points missing.

�

U
¹0•0º
¹0•1º

¹1•2º

¹2•1º
¹2•3º

¹0•2º

¹0•3º
¹1•0º

¹1•1º

¹1•3º

¹2•0º
¹2•2º

(c) Set interpretation of Fig. 10b.

Fig. 10. A grid representation of iteration spaces showing a dense and sparse iteration space for4� 3 matrix.

� Idempotent: A function is idempotent if, for anyG, the function evaluates toGwhenever
all arguments areG(i.e.,5¹G• ”””• Gº = G). The max function is an example of an idempotent
function, sincemax¹G• Gº = Gfor any G.

� Annihilator(x»•p¼): A function has an annihilatorGif the function evaluates toGwhenever
any argument isG. Arithmetic multiplication, for instance, has 0 as its annihilator since
multiplying 0 by any value yields 0. If? is also speci�ed, then the function is only guaranteed
to evaluate toGif the ?-th argument (as opposed to any argument) isG.

� Identity(x»•p¼): A binary function has an identityGif, for any~, the function evaluates to~
whenever one argument isGand the other argument is~. Multiplication, for instance, has 1
as its identity since multiplying 1 by any~ yields~. If ? is also speci�ed, then the function is
only guaranteed to evaluate to~ if the ?-th argument (as opposed to any argument) isG.

Fig. 9 demonstrates how a programmer can specify that thebitwise_and function is commutative
and has 0 as its annihilator. From these properties, our technique infers that thebitwise_and
function (with inputsGand~) has iteration algebraG\ ~ assuming that the input arrays have 0 as
�ll values, as we will explain in Section 5.2.

5 GENERALIZED ITERATION SPACES

Having described the desired features of a sparse array programming model, we now explain how
our sparse array compiler reasons about and implements these features. In this section, we describe
how our system reasons about user-de�ned functions iterating over any iteration space through
an IR callediteration algebra. Then, we describe how an iteration algebra can be derived from
mathematical properties of user-de�ned functions.

5.1 Iteration Algebra

We can view the iteration space of loops over dense arrays as a hyper-rectangular grid of points by
taking the Cartesian product of the iteration domain of each loop, as in Fig. 10a. A sparse iteration
space, shown in Fig. 10b, is a grid with missing points called holes, which take on the�ll value
attached to the format of that array. Another way to view iteration spaces is as a Venn diagram of
coordinates where the universe is the set of all points in a dense iteration space. Sparse arrays only
de�ne values at some of the possible coordinates in the dense space, forming subsets within the
universe, as shown in Fig. 10c. This view naturally leads to a set expression language for describing
array iteration spaces, which we introduce, callediteration algebra.

Iteration algebra is de�ned by introducing index variables into set expressions, where the variables
in the set expressions are the coordinate sets of sparse arrays. The index variables index into the
sparse arrays, controlling which coordinates are compared in the set expression. For example, the
iteration algebra for28 =

Í
9� 8 919 (i.e., sparse matrix-vector multiplication) is� 8 9\ 19, where the9

in � 8 9indexes into the second dimension of� and the9in 1 indexes into the �rst dimension of1.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

128:10 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

U

m
ax

¹�•
1

•0
º m

ax¹1
• �• 0º

max¹1 •1 • � º

max
¹�• �• 0º

max
¹�• 1 • � º

max
¹1 • �• � º

max¹�• �• � º

max¹1 •1 •0º�

� �

Fig. 11. Illustration of case (1), where5 is the ternary
max operator, A and B have fill value1 and C has fill
value 0.

U

min
¹�• Eº

min
¹�• � º

min
¹E• �º

min
¹E• Eº� �

Fig. 12. Illustration of case (2), where5 is the idempo-
tent min operator and all arguments have the same fill
valueE.

U

max
¹�• 42º

max
¹�• � º

max
¹�1 • � º

max
¹�1 •42º� �

Fig. 13. Illustration of case (3), where5 is the max
operator with identity �1 , A has fill value 42 and B
has fill value�1 .

Coordinate sets indexed by the same index variable are combined using the set operations. In the
SpMV example, the9coordinates of� and1 are combined with an intersection.

The prior work of Kjolstad et al. [2017] intertwines tensor index notation and the corresponding
iteration space by interpreting additions as unions and multiplications as intersections. As such,
it is limited to describing and working with spaces that are represented as compositions of those
intersections and unions. Our iteration algebra addresses this by adding support forset complements,
which makes the language complete: any iteration space can be described as compositions of
intersections, unions, and complements. For example, set complements can be used to express the
iteration space� 8 9\ � 8 9, which contains only coordinates in� that are also not present in� .

Promoting iteration algebra to an explicit compiler IR has two bene�ts. First, it lets users directly
express the iteration space of a complicated function whose space can not be derived from simple
mathematical properties. Second, it detaches the compiler machinery that generates low-level loops
to iterate over data structures from the unbounded number of functions that a user may de�ne.

5.2 Deriving Iteration Algebras

To derive the iteration algebra for an array index notation expression, our technique recurses
on the expression and derives the algebra for each subexpression by combining the iteration
algebras of its arguments. As an example, to derive the iteration algebra for the expression
bitwise_and¹gcd¹18•28º•38º, our technique �rst derives the iteration algebra forgcd¹18•28º and
then combines it with38 (the iteration algebra for the second argument ofbitwise_and).

If a function 5 is explicitly de�ned with an iteration algebra0;6, then our technique derives the
iteration algebra for an invocation of5 by replacing the terms of0;6with the iteration algebras
of the function arguments. In Fig. 5, for instance,gcd(x,y) is de�ned with iteration algebra

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

Compilation of Sparse Array Programming Models 128:11

fG< 0g [f ~ < 0g. So to derive the iteration algebra forgcd¹18•28º, our technique checks that1 and
2 have 0 as �ll values and, if so, substitutes18 for fG< 0gand28 for f~ < 0g, yielding18 [28 as the
function call's iteration algebra. (If either1 or 2 has a �ll value other than 0 though, our technique
instead conservatively returns the universeU as the function call's iteration algebra.)

If a function is instead annotated with properties, our technique attempts to construct an iteration
algebra that minimizes the amount of data to iterate over. This is done by pattern matching on the
cases below, in the order they are presented. In particular, assuming a function5 is invoked with
arguments0A6Bin the target expression, we apply the cases below. For each case, we include an
example of resulting iteration space on sample inputs, and visual examples for the �rst three cases
in Figures 11, 12 and 13.

(1) 5 has an annihilator U. When 5 is commutative, our technique returns the algebraU
intersected with the algebras of all arguments in0A6Bwith �ll value of U. Any coordinate2
where tensor arguments with �ll valueUare unde�ned will cause5 to equalUat2 becauseU
annihilates5. Therefore, we can iterate only over positions where arguments with �ll value
Uare de�ned.
Example. Consider the ternary max operatormax¹�• �• � º, where� and� have �ll value 1
(the annihilator formax, soU = 1) and� has �ll value 0. In this case, we emit an algebra
to iterate over� \ � . Consider a coordinate2 in � . If 2 2 � \ � , then themaxoperator will
return the maximum of� , � , and� . If 2 2 � \ � , then no matter what� 's value at2 is, it will
be annihilated by� or � having the value of1 (see Fig. 11).

(2) 5 is idempotent and all arguments have the same �ll value E. Our technique returns
the union of the algebras of all arguments. Since all arguments have �ll valueEand 5 is
idempotent,5 applied at all points outside the union of all arguments evaluates toE.
Example. Consider themin operatormin¹�• � º, where� and � have some arbitrary �ll
valueE. Becausemin is idempotent, tt is correct to iterate over the union of� and� �at all
coordinates2 8 � [� , the result ofmin is min¹E• Eº = E(see Fig. 12).

(3) 5 has an identity 8. If all arguments have �ll value8, then our technique returns the union
of the algebras of all arguments, because computation only must occur where the arguments
are de�ned. If all but one argument have �ll value8, then our technique can also return the
same algebra, but marks that the resulting expression has the �ll valueEof the remaining
argument, since5 applied to8andEreturnsE.
Example. Consider themaxoperatormax¹�• � º where� has �ll value �1 and� has �ll
value 42. Here, we can infer the result tensor should have �ll value 42 since the computation
at any coordinate outside of� [� is max¹�1 •42º = 42(see Fig. 13).

(4) 5 is not commutative. When 5 is not commutative, cases (1) and (3) can be applied, but
only to the position? where the property holds.
Example. Let 5¹0•1º = 0•1 has an annihilator0 at position 0, so case (1) could be applied to
iterate only over the de�ned values of the input array0 if it had �ll value 0.

If none of these cases match but the result array's �ll value is left unspeci�ed by the user, our tech-
nique can still return the union of the algebras of all arguments (and constant propagate through5
to determine an appropriate �ll value for the result). Otherwise, our technique falls back to returning
U as the function call's iteration algebra. In the case of a function callbitwise_and(x,y) though,
our technique can simply apply the �rst rule (since Fig. 9 speci�es the function is commutative
and has 0 as its annihilator) to derive the iteration algebraG\ ~ for the function call. Thus, our
technique can infer that the expressionbitwise_and¹gcd¹18•28º•38º has¹18 [28º \ 38 as its iteration
space.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

128:12 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

;

2
1

1•3
2•3

3

1 2

3

1 \ 2

1 \ 3 2 \ 3
1 \ 2 \ 3

while 1, 2, and3 have coordinates leftdo
if in region »1•2•3¼then ” ” ”
else if in region »1•3¼then ” ” ”
else if in region »2•3¼then ” ” ”

while 1•3has coordinates leftdo
if in region »1•3¼then ” ” ”

while 2•3has coordinates leftdo
if in region »2•3¼then ” ” ”

1 \ 3 2 \ 3

1 \ 2 \ 3

2 \ 3

1 \ 3

Fig. 14. An iteration la�ice for the tensor algebra¹18 ¸ 28º � 38 and sparse arraybitwise_and¹gcd¹18•28º•38º
expressions, which both have the iteration space¹1 [2º \ 3 for index variable8, along with the sequential
pseudocode that gets emi�ed. The la�ice points are colored to match the corresponding Venn diagram. The
subsections of the Venn diagram on the right-hand side of the figure correspond to thewhile -loop conditions
and if -conditions in the code.

6 GENERALIZED ITERATION LATTICES

After constructing an iteration algebra from an array index notation expression as described in
Section 5, our compiler translates the algebra into an IR to represent how tensors must be iterated
over to realize an iteration space corresponding to the iteration algebra. In particular, we generalize
iteration lattices and their construction method described by Kjølstad [2020] to support iteration
algebras containing set complements. We �rst present an overview of iteration lattices, and then
detail how they must be extended in order to describe any arbitrary iteration space.

6.1 Background

An iteration lattice divides an iteration space into regions, which are described by the tensors that
intersect for each region. These regions are the powerset of the tensors that form the iteration
space. Thus, an iteration space with: tensors divides into2: iteration regions (the last region is the
empty set; where no sets intersect). An iteration lattice is a partial ordering of the the powerset of
a set of tensors by size of each subset. Each subset in the powerset is referred to as alattice point.
Ordering the tensors in this way forms a lattice with increasingly fewer tensors to consider for
iteration, as shown in Fig. 14 for the tensor algebra expression¹18 ¸ 28º � 38 and for the sparse
array expressionbitwise_and¹gcd¹18•28º•38º. An iteration lattice can also be visualized as a Venn
diagram, where points in the lattice correspond to subspace regions, also shown in Fig. 14. We say a
lattice point?1 dominates another point?2 (i.e.,?1 ¡ ?2) if ?1 contains all tensors of?2 as a subset.

An iteration lattice can be used to generate code that coiterates over any iteration space made
up of unions and intersections. The lattice coiterates over several regions until a segment (i.e.,
tensor) runs out of values. It then proceeds to coiterate over the subset of regions that do not have
the exhausted segment. The lattice points enumerate the regions that must be considered at a
particular point in coiteration, and enumerate the regions that must be successively excluded until
all segments have run out of values. In order to iterate over an iteration lattice, we proceed in the
following manner beginning at the top point of the lattice, also referred to as the lattice root point:

(1) Coiterate over the current lattice point's tensors until any of them runs out of values.
(2) Compute thecandidate coordinate, which at each step is the smallest of the current coordinates

of the tensors (assuming coordinates are stored in sorted order within each tensor).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

Compilation of Sparse Array Programming Models 128:13

(3) Check what tensors are currently at that coordinate to determine which region the candidate
coordinate is in. The only regions we need to consider are those one level below the current
lattice point since these points exclude the tensor segments that have run out of values.

(4) Follow the lattice edge for the tensors that have run out of values to a new lattice point, and
repeat the process until reaching the bottom.

This strategy leads to successively fewer segments to coiterate and regions to consider, which
generates code consisting of a sequence of coiteratingwhile -loops that become simpler as it moves
down the lattice.

6.2 Representing Set Complements

To support iterating over any iteration space�composed from intersections, unions,and comple-
ments�we introduce the concept of anomitter pointto iteration lattices. An omitter point is a
lattice point where computation must not occur, in contrast to the original lattice points where
computation must be performed.

To distinguish omitter points from the original lattice points, we rename the original points to
producer pointssince they produce a computation. Omitter points with no producers as children
are equivalent to points missing from the lattice, since no loops and conditions need to be emitted
for both cases. By contrast, omitter points that dominate producer points must be kept, since these
omitter points lead to code that explicitly skips computation in a region.

Fig. 15 illustrates the iteration space (upper right) for a function like a logicalxor with a symmetric
di�erence iteration algebra, along with the corresponding iteration lattice (left) which contains
an omitter point (marked with a red�) at 0•1. The pseudocode and the partial iteration spaces
show how the coiteration algorithm successively eliminates regions from the iteration space, as
the vectors0 and1 runs out of values. This iteration space is not supported by prior work and
illustrates the expressive power of omitter points. An omitter point is needed so the sparse array
compiler knows to generate code that coiterates over the vectors0 and1 while explicitly avoiding
computing and storing values when both vectors are de�ned.

0•1

0 1

;

1 0

0 1

while 0 and1 have coordinates leftdo
if in region »0•1¼then do nothing
else if in region »0¼then ” ” ”
else if in region »1¼then ” ” ”

while 0 has coordinates leftdo
if in region »0¼then ” ” ”

while 1 has coordinates leftdo
if in region »1¼then ” ” ”

0 1

0

1

Fig. 15. Iteration la�ice and corresponding coiteration pseudocode forxor that has the iteration algebra
¹0 [1º \ :¹ 0 \ 1º. The treatment of the omi�er point is the same when emi�ingwhile -loops. When emi�ing
inner-loopif -statements, we do nothing at0 \ 1. Without the explicit skip, we may accidentally end up
performing computations inside the0 \ 1 region. The check for inclusion in0 \ 1 includes checks that0 and
1 are not explicit fill values at the current point.

6.3 Construction

We generate lattices from an iteration algebra using a recursive traversal of the iteration algebra
shown in Algorithm 1. Our algorithm �rst performs two preprocessing passes over the input
iteration algebra� . The �rst pass uses De Morgan's Laws to push complement operations down
the input algebra until complements are applied only to individual tensors (i.e.� \ �) � [� º.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

128:14 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

Algorithm 1 Iteration Lattice Construction Algorithm
// Let L represent an iteration lattice and? represent an iteration lattice point.
procedure BuildLattice (Algebra A)

if A is Tensor(t)then • Segment Rule
return L (?([t], producer=true))

else if A is Tensor(t)then • Complement Rule
?> = ?([t, U], producer=false)
?? = ?([U], producer=true)
return L ([?> , ??])

else if A is (left \ right) then • Intersection Rule
L ; , L A = BuildLattice (left),BuildLattice (right)
cp = L ; .points()� L A.points()
mergedPoints = [?(?; ¸ ?A, producer=?; .producer̂ ?; .producer) :8¹?; , ?A) 2 cp]
mergedPoints =RemoveDuplicates(mergedPoints, ommitterPrecedence)
return L (mergedPoints)

else if A is (left [right) then • Union Rule
L ; , L A = BuildLattice (left),BuildLattice (right)
cp = L ; .points()� L A.points()
mergedPoints = [?(?; ¸ ?A, producer=?; .producer_ ?; .producer) :8¹?; , ?A) 2 cp]
mergedPoints = mergedPoints +L ; .points() +L A.points()
mergedPoints =RemoveDuplicates(mergedPoints, producerPrecedence)
return L (mergedPoints)

end procedure

The second pass (calledaugmentation) reintroduces tensors present in function arguments but
not present in the input iteration algebra, without changing its meaning. For example, consider
the function 5¹0•1º = 0•1 which has an annihilator of0 at 0. The algebra derivation procedure in
Section 5.2 tells us that the iteration algebra for5 is 0 (assuming0 has �ll value 0)�note that 1 is
not included in the algebra even though it is an argument to5. The augmentation pass uses the set
identity � [¹ � \ � º to reintroduce any tensor� into the algebra. All tensors present in function
arguments but not present in the iteration algebra are brought back into the algebra in this step.

After preprocessing, our algorithm performs a recursive tree traversal matching on each set
operator (complement, union, intersection) in the iteration algebra. Unlike lattice construction in
Kjolstad et al. [2017], we introduce the Complement Rule and the handling of omitter points in the
Intersection and Union Rules. At a high level, our algorithm performs the following operations at
each set operator in the algebra:

� Segment Rule. Return a lattice with a producer point containing the input tensor.
� Complement Rule. Return a lattice that omits computation at the input tensor and performs

computation everywhere else.
� Intersection Rule. Return a lattice representing the intersection of the two input lattices.
� Union Rule. Return a lattice representing the union of the two input lattices.

In the Intersection and Union Rules, taking the cross product of points in the left and right lattices
may create duplicate points with di�erent types. These duplicates are resolved with producer
precedence in the Union Rule, and omitter precedence in the Intersection Rule. Finally, we prune
any omitter points that dominate no producer points since they are equivalent to points missing
from the lattice. Fig. 16 visualizes our algorithm applied to the iteration algebra0 \ 1. We �rst
apply the Segment Rule to0 and the Complement Rule to1, and then apply the Intersection Rule
on the resulting lattices. A similar example of the Union Rule can be found in Fig. 17.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

Compilation of Sparse Array Programming Models 128:15

0

;

0 \

1•U

U

;

1

U

=

0•1•U

0•U

;

1

0•U

Fig. 16. Intersection Rule for0\ 1. The0 and1 la�ices
were generated using the Segment and Complement
Rules respectively.

0

;

0 [

1•U

U

;

1

U

=

0•1•U

0•U

;

1

0•U

Fig. 17. Union Rule for0[1. The0 and1 la�ices were
generated using the Segment and Complement Rules
respectively.

The presentation of Algorithm 1 is limited to the case when tensors are not repeated in the
iteration algebra expression. This is because the lattice point pairs, when being merged, are unaware
of whether or not the duplicated tensor fell out from the iteration space in the other lattice point. If
the tensor did fall out from the lattice for one point and is in the lattice point for the other, then we
end up getting that the two points represent non-overlapping iteration spaces and should not be
merged, as illustrated by Fig. 18 between the left0 tensor and right1 tensor for point pair (?; , ?A).
We solve this by modifying the Cartesian product of points in the algorithm to a �ltered Cartesian
product, which is fully described in Appendix Algorithm 2 in the supplemental materials2. Brie�y,
the �ltered Cartesian product ignores any point pairs from the Cartesian product between?; 2 L ;
and?A 2 L A that do not overlap. It determines this by checking for every tensorCin point ?; ,
whetherCexists in?A's root point but does not exist in point?A itself (and vice versa).

U

0 0•1 1

0•1

01

;

10

01
� 1

;
1

U

0 1

Fig. 18. Iteration la�ice and space of two la�ices with a repeat tensor1. The (L ; � L A) produces a point pair:
(le� point 0, right point 1) shown in green. When merging that pair, the two Venn diagrams show that the
le� 0-only region (blue) and right whole-1 region (red) do not overlap.

7 GENERALIZED CODE GENERATION

In this section, we describe how the generalized iteration lattices described in Section 6 can be used
to generate code that iterates over generalized iteration spaces. We also describe optimizations that
can be performed during code generation using di�erent properties of user-de�ned functions, and
we describe how code generation is performed for expressions that slice sparse tensors.

7.1 Lowering Generalized Iteration La�ices

Our technique for code generation draws on the code generation technique that TACO uses, as
described in [Kjølstad 2020]. The main di�erence is how iteration lattices are lowered into code,
since there are now types associated with each lattice point.

Like TACO, our technique �rst lowers an array index notation expression intoconcrete index
notation, which explicitly denotes the forall loops over index variables. For example, the array
index notation expressionxor¹� 8 9• � 8 9º corresponds to the concrete index notation expression

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

128:16 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

8889 xor¹� 8 9• � 8 9º. The code generation algorithm walks through the forall statements in the
concrete index notation expression. At each88 (statement, our technique constructs an iteration
lattice L from (and8. Then, at each lattice point? 2 L , our technique generates a loop that
coiterates over all tensors in?. Next, for each point?0 such that?0 � ?, our technique emits an
if -statement whether to enter that case and recursively invokes the code generation procedure
on a statement(0 formed by removing tensors from(not in ?0. In our technique, when?0 is a
producer point, a compute statement is emitted since producer points correspond to regular points
in standard iteration lattices. This entails inlining user-de�ned function implementations within
the case; if the function has multiple implementations (like in Fig. 5), our technique chooses an
optimized implementation based on what tensors are present in?0.

When?0 is an omitter point, it must be handled di�erently, as?0 represents computation that
must not occur. When considering the statement(0 constructed from?0, our technique emits
nothing in order to skip computation at(0, as long as(0 has no foralls (i.e., it can access tensor
values directly). To see why computation cannot always be skipped at omitter points, again consider
the expression8889xor¹� 8 9• � 8 9º. As discussed previously, the iteration lattice forxor has an omitter
point at �• � . When lowering the loop over8, omitting computation at the point where� and�
have equal8coordinates would be incorrect, since computation must be omitted at coordinates
that have equal values for both8and 9. Finally, when omitting computation, our technique also
emits code to check that the tensors do not have explicit �ll values at the considered coordinates.

7.2 Reduction Optimizations

When generating code for reductions, our technique can take advantage of properties of the
reduction function to emit code that avoids iterating over entire dimensions or that breaks out of
reduction loops early. In particular, our technique can perform the following optimizations based
on the identity and annihilator properties of the reduction function5:

� Identity 8. If the (inferred) �ll value of the tensor expression being reduced over is equal to8,
then we can iterate over only the de�ned values of the tensor mode, rather than the entire
dimension. This optimization corresponds to the standard optimization used by TACO when
reducing over addition in the addition-multiplication¹¸ •�º semiring.

� Annihilator U. If target reduction is being performed into a scalar value, then we can
insert code to break out of the reduction if the reduction value ever equalsU. The loop
ordering is important to apply this optimization. Consider the array index notation expression
� 8 9= reduction: ¹� 8 9:º. If the loops are ordered as8! 9! : then this optimization could
be applied, because for each8and 9, : is reduced into� 8 9. If the loops were instead ordered
8! : ! 9then this optimization could not be performed, since attempting to break out of
the reduction could skip unrelated iterations of the9loop.

7.3 Slicing

This section describes how slicing operations like windowing and striding can be compiled into
an expression from array index notation. The intuition for our approach comes from examining
slicing operations in dense array programming libraries like NumPy. In NumPy, taking a slice of a
dense array is a constant time operation, where an alias to the underlying dense array is recorded,
along with a new start and end location. Operations on the sliced array use those recorded bounds
when iterating over the array, and o�set the coordinates by the bounds of the slice. Rather than
viewing a slice as an extraction of a component, we can view it as an iteration space transformation
that restricts the iteration space to within that slice, then projects the iteration space down to a
canonical iteration space, where each dimension ranges from zero to the size of the slice.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

Compilation of Sparse Array Programming Models 128:17

// Limit outer loop to the slice 1:5:2.
for (int i = 0; i < 2; i++) {

// Project access to A into the slice.
int iA = (i * 2) + 1;
int jA_s = A2_pos[iA];
int jA_e = A2_pos[(iA + 1)];
// Seek the start of the slice 2:6:2.
jA_s = bSearch(A2_crd, jA_s, jA_e, 2);
// Iterate from the start of the slice.
for (int jA = jA_s; jA < jA_e; jA++) {

// Check that coordinate is aligned
// to the stride 2:6:2.
if ((A2_crd[jA] - 2) % 2 != 0)

continue;
// Project coordinate into canonical
// iteration space of 2:6:2.
int j = (A2_crd[jA] - 2) / 2;
// Break if coord is outside slice.
if (j >= 2)

break;
int jB = i * 2 + j;
B_vals[jB] = A_vals[jA]; }}

Fig. 19. Generated kernel for� 8 9 =
� 8¹1:5:2º9¹2:6:2º demonstrating array slicing.
Red indicates slicing-related code.

Using this intuition, we can view operating on a slice of
a tensor dimension, or tensor mode, as restricting the iter-
ation space over that mode to some set(which contains
all coordinates in the desired slice. This corresponds to
intersecting the iteration lattice for the sliced modes with
(. However, when(is a set that has a restricted shape
(like for a rectangular slice), the intersection with(can be
compiled directly into the tensor expression. This special-
ization is directed by capabilities of the data structured
storing the sliced tensor mode, which provide informa-
tion about what operations the mode supports [Chou
et al. 2018]. We describe how to specialize slicing oper-
ations for dense tensor modes that support the capability
to e�ciently locate (i.e., random access) into arbitrary po-
sitions, and for compressed modes that support the ability
to iterate over de�ned elements of the tensor. We include
generated code for the array index notation expression
� 8 9= � 8¹1:5:2º9¹2:6:2º in Figure 19 to visualize the e�ect of
slicing on the kernel. In the example,� is a CSR format
two-dimensional array and� is a dense two-dimensional
array.

For modes that support e�cient locate, our technique
supports slicing in a way that is similar to how dense
array programming libraries slice arrays. In particular,
our technique emits code that operates entirely on the
canonical iteration space, and projects accesses to the tensor into the slice's iteration space. For a
slicelo:hi:st , densefor -loops over the sliced mode range from 0 to(hi - lo) / st instead of
0 to dim. Then, whenever a valuei is used to access the sliced tensor mode, it is projected from the
canonical iteration space into the slice by replacingi with (i * st) + lo .

Slicing modes that only support e�cient iteration is the inverse of how slicing is performed for
modes with e�cient locate. Since it is not possible to e�ciently access only the positions within
the slice, our technique generates code that instead iterates over the coordinates in the mode and
project these coordinates into the canonical iteration space. When iterating over a tensor mode
with a slicelo:hi:st , the generated code must restrict the iteration to coordinates betweenlo
andhi . It does this by seeking and skipping to the �rst coordinate greater than or equal tolo , and
then breaking out of iteration at the �rst coordinate greater than or or equal tohi . To restrict the
iteration space along with the desired stridest , our technique must also emit code that ensures
any coordinatec read from the tensor aligns with thest by skipping coordinates where(c - lo)
% st != 0. Finally, our technique emits code that projects a coordinatec read from iteration into
the canonical iteration space by settingc equal to(c - lo) / st . At this point, the remaining
steps for code generation can proceed as before, as the resulting coordinates are all within the slice
and mapped to the canonical iteration space of the slice.

8 EVALUATION

We evaluate our sparse array programming compiler by comparing to the PyData/Sparse library,
which is the only general sparse array language implementation known to us. We also compare
to the less general SciPy/Sparse and GraphBLAS libraries, which consist of hand-implemented
functions, to demonstrate our performance against hand-optimized code. Finally, we implement

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

128:18 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

a medical imaging edge detection algorithm and the Minimax algorithm from game theory to
demonstrate the applicability of our system. We restrict our evaluation to multi-core CPUs, as our
implementation does not yet support GPUs.

8.1 Methodology

All experiments are run on a dual-socket, 12-core Intel Xeon E5-2680 v3 machine @ 2.5 GHz with 30
MB of L3 cache and 128 GB of main memory. The machine runs Ubuntu 18.04.3 LTS. Our system and
generated kernels are compiled with GCC 7.5.0. Python 3.6.9 is used to run all Python code. In our
evaluation, we compare against PyData/Sparse [Abbasi 2018] version 0.11.2, SciPy [Virtanen et al.
2020] version 1.5.4, NumPy [Harris et al. 2020] version 1.19.5, and SuiteSparse:GraphBLAS [Davis
2019] version 4.0.3. We disable hyperthreading and usenumactl to restrict execution to a single
socket. All execution times, except in Section 8.3, are compared over an average of 10 executions.

8.2 Comparison to Sparse Array Programming Libraries

In the Python ecosystem, programmers have two main options for operating on sparse matrices or
arrays: SciPy/Sparse and PyData/Sparse. SciPy/Sparse is a SciPy package for working with sparse
matrices. It contains some common sparse matrix formats along with hand-written C implementa-
tions for many operations, but is limited in the scope of array programming features supported.
For additions and multiplications, our system generates the exact same code as the TACO sys-
tem [Kjolstad et al. 2017], which performs competitively with the hand-optimized implementations
like those in SciPy [Chou et al. 2018].

PyData/Sparse is a recent project that supports tensors of arbitrary dimensions in the COO
format. Like the NumPy library for dense array processing, it also supports general user-de�ned
functions. The PyData/Sparse implementation utilizes existing NumPy and SciPy/Sparse dense
kernels by �rst transforming and transposing the data into shapes that NumPy and SciPy/Sparse
can operate on. Then, the PyData/Sparse algorithm will transform the results back into COO format.
While the kernels used by PyData/Sparse are heavily optimized, its data transformation-based
approach adds additional data movement overhead. By contrast, our techniques for sparse array
programming can generate optimized kernels that operate on tensors of any dimension and data
format, without performing unnecessary data movement.

Table 2. FROSTT tensors used in our evaluation

Tensor name Non-zeros Order Shape

nips 3,101,609 4 2,482 x 2,862 x 14,036 x 17
uber-pickups 3,309,490 4 183 x 24 x 1,140 x 1,717
chicago-crime 5,330,673 4 6,186 x 24 x 77 x 32

vast 26,021,945 5 165,427 x 11,374 x 2 x 100 x 89
enron 54,202,099 4 6,066 x 5,699 x 244,268 x 1,176
nell-2 76,879,419 3 12,092 x 9,184 x 28,818

8.2.1 Binary Operations.We demon-
strate the �exibility and per-
formance of our techniques by
implementing a subset of the
NumPy element-wise universal
functions (ufuncs) that have it-
eration spaces di�erent from in-
tersection and union. We eval-
uate the logical_xor , ldexp,
right_shift andpowerufuncs,
which have the iteration spaces
shown in Fig. 20. SciPy/Sparse does not support most ufuncs outside of addition and multiplication
and NumPy implementations cannot materialize the tensors into a dense format, so we restrict our
comparison to PyData/Sparse.

We evaluate the above ufuncs on the subset of real-valued tensors from the FROSTT tensor
repository [Smith et al. 2017] and SuiteSparse sparse matrix repository [Davis and Hu 2011] that
PyData/Sparse could successfully load without memory issues. Characteristics about the FROSTT

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 128. Publication date: October 2021.

	Abstract
	1 Introduction
	2 Motivation
	3 Overview
	4 Sparse Array Programming Model
	4.1 Sparse Arrays and Fill Values
	4.2 Array Index Notation
	4.3 Generalized Functions

	5 Generalized Iteration Spaces
	5.1 Iteration Algebra
	5.2 Deriving Iteration Algebras

	6 Generalized Iteration Lattices
	6.1 Background
	6.2 Representing Set Complements
	6.3 Construction

	7 Generalized Code Generation
	7.1 Lowering Generalized Iteration Lattices
	7.2 Reduction Optimizations
	7.3 Slicing

	8 Evaluation
	8.1 Methodology
	8.2 Comparison to Sparse Array Programming Libraries
	8.3 GraphBLAS Kernels
	8.4 Applications

	9 Related Works
	10 Future Work
	11 Conclusion
	12 Acknowledgements
	References

