
Automatic Datatype Generation and Optimization

Fredrik Kjolstad1

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

fred@csail.mit.edu

Torsten Hoefler Marc Snir
Department of Computer Science

University of Illinois at Urbana-Champaign
{htor,snir}@illinois.edu

Abstract
Many high performance applications spend considerable time
packing noncontiguous data into contiguous communication buffers.
MPI Datatypes provide an alternative by describing noncontiguous
data layouts. This allows sophisticated hardware to retrieve data
directly from application data structures. However, packing codes
in real-world applications are often complex and specifying equiv-
alent datatypes is difficult, time-consuming, and error prone. We
present an algorithm that automates the transformation. We have
implemented the algorithm in a tool that transforms packing code
to MPI Datatypes, and evaluated it by transforming 90 packing
codes from the NAS Parallel Benchmarks. The transformation al-
lows easy porting of applications to new machines that benefit from
datatypes, thus improving programmer productivity.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming, Parallel programming

General Terms Performance, Design

Keywords MPI, Datatypes, Compiler Technique, Refactoring

1. Introduction
Data movement is the most expensive operation in modern high
performance systems. It is therefore essential that we move data
as few times as possible. MPI Datatypes are objects that describe
arbitrary data layouts. Examples include strided and indexed data.
Datatypes let us perform operations such as send, receive, put and
write on non-contiguous data with a single call to the runtime.

If the programmer does not use datatypes when he sends non-
contiguous data then he must either send it as multiple messages
or first copy it to a contiguous buffer. Since it is expensive to send
small messages, programmers typically opt for the copy. Such copy
code is called packing code, because it packs data into a contiguous
buffer. Datatypes allow the programmer to specify non-contiguous
sends in one operation, without first performing a copy pass.

Traditional MPI systems pack data specified by datatypes into
contiguous buffers, thereby forfeiting the performance gains from
the removal of application packing code. However, modern net-
work hardware such as InfiniBand provide support for transferring
non-contiguous data (scatter/gather). In fact, communication per-
formance improvements of 4.8x have been demonstrated, provided
datatypes are specified [5]. Given this performance improvement

1 The author did his work while he was at the University of Illinois.

Copyright is held by the author/owner(s).
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
ACM 978-1-4503-1160-1/12/02.

double b u f f e r [N ∗ 3] ;
f o r (i n t i =0 ; i < N; i ++) {

b u f f e r [3∗ i] = g r i d [i] [0] [0] ;
b u f f e r [3∗ i +1] = g r i d [i] [0] [1] ;
b u f f e r [3∗ i +2] = g r i d [i] [0] [2] ;

}
MPI Send (b u f f e r , N ∗ 3 , MPI DOUBLE , l e f t , t ag , comm) ;

MPI Data type v e c t ;
MPI Type vec to r (N, 3 , N ∗ 3 , MPI DOUBLE , &v e c t) ;
MPI Type commit (& v e c t) ;
MPI Send(& g r i d [0] [0] [0] , 1 , v e c t , l e f t , t ag , comm) ;

Figure 1. Border exchange communication kernel before and after
transformation from packing code to MPI Datatypes.

potential it is no surprise that emerging systems provide increas-
ingly rich datatype support.

We present a novel algorithm that transforms packing code to
optimized datatypes. The algorithm converts packing code to an
internal datatype representation that is optimized through a number
of passes before it is used to rewrite the application. The presen-
tation assumes C and MPI, but the techniques generalize to other
environments. For evaluation purposes, we implemented the algo-
rithm as an Eclipse CDT refactoring tool. We then used the tool to
transform 90 packing codes from the NAS Parallel Benchmarks [2].
Although we chose to implement the transformation in a refactor-
ing tool, it is equally applicable in a compiler setting. For a detailed
description of the algorithm including each optimization step, a full
evaluation, discussion and two case studies we refer the reader to
the accompanying technical report [3]. The tool, experimental data
and additional case studies have been made available online [1].

1.1 Motivating Example
Figure 1 shows a very simple 2D left border exchange example
before and after it has been transformed from packing code to MPI
Datatype code. The example is similar to one of the packing codes
in the NAS LU benchmark. The grid array stores three values for
each cell of a two dimensional domain. Both kernels send the left
border of the grid, which consist of noncontiguous strided data.
The first kernel packs the column into a contiguous buffer. The
second kernel uses a vector datatype.

1.2 Related Work
Several research groups have investigated techniques for datatype
generation. These are exemplified by Tansey & Tilevich’s tool for
generating datatypes for C++ classes [6]. Our approach differs as
it transforms packing code to datatypes. Other researchers have ex-
plored techniques to improve datatype performance. In one strand,
researchers optimize runtime datatype parsing and packing code
generation [4]. In a second strand, researchers have explored hard-
ware and software support for non-contiguous transfers, achieving
large communication speedups such as 4.8x [5]. Our approach stat-
ically optimize datatypes to reduce their runtime cost.

struct
count: N

double

loop

sequence

statement

N

3

struct
count: 3

contiguous
count: 3

double

loop

sequence

statement

N

3

vector
count: N
stride: N

vector
count: N

stride: N*3
blocklen: 3

double

loop

sequence

statement

N

3

Figure 2. Equivalent Datatype IRs for the figure 1 example: initial IR (left), after specialization (center) and after compression (right).

2. Efficient Datatype Generation
Our algorithm for datatype generation and optimization is centered
on an intermediate representation we call the Datatype IR. The
Datatype IR captures the important (hierarchical) constructs of
the packing code—packing statements, loops and sequences—and
links them to equivalent datatypes. Figure 2 contains three Datatype
IR examples. Our algorithm supports a number of datatypes. Some
of these, listed in order of strictly decreasing generality, are struct,
hindexed, hvector, vector and contiguous (see [3] for details). Note
that most packing codes can be represented by different equivalent
datatypes. For example, the three Datatype IRs in figure 2 are
equivalent. We say a datatype representation is more efficient if it
is expressed in terms of more specific datatypes, as these require
fewer arguments in their construction. That is, a contiguous type
can be expressed using fewer arguments than an indexed type. Our
goal is therefore not merely to find a datatype that is equivalent to a
packing construct, but to find one that is efficient. We achieve this
by optimizing the datatype representation.

The Datatype IR can be constructed from any imperative lan-
guage with packing code, such as C/C++/Fortran with MPI, or
UPC. Two preconditions must hold before Datatype IR can be con-
structed in the current version: (1) the packing code block must
only contain nested loops, assignments and if statements, and (2)
the code block must write to consecutive locations in the pack-
ing buffer. Datatype IR construction requires identifying packing
statements and then summarize loop nests containing packing state-
ments, and sequences of packing statements and loops. Every pack-
ing statement, packing sequence and packing loop becomes part of
a packing group. Once packing groups are summarized, a struct
datatype is created to represent each composite group (loops and
sequences) and a primitive datatype is set to represent each pack-
ing statement. Since struct datatypes can represent any data layout,
the initial structs are equivalent to the packing code. The left box in
figure 2 shows the initial IR for the example from figure 1.

Once the Datatype IR has been constructed our algorithm per-
forms a number of optimization passes. These fall into two cate-
gories: specialization and compression. We currently support four
specialization and three compression optimizations. Note that the
Datatype IR allows optimization passes to be cleanly expressed in a
language-independent manner. The optimizations are summarized
below and detailed descriptions, as well as suggestions for addi-
tional optimizations, are provided in the technical report [3].

The specialization optimizations passes form a chain that suc-
cessively specialize datatypes as much as possible. Let → denote
a specialization pass, then the four specialization optimizations are
struct → hindexed → hvector → vector → contiguous. That
is, each optimization specializes one datatype to the next, provided
specialization preconditions are met. Thus, depending on the access
pattern of a given packing group, the specialization chain may be
aborted at any point. For example, in the center IR in figure 2 the se-
quence was specialized to a contiguous type, while the loop could
only be specialized to a vector. The distribution of the datatypes

that replace the 90 packing codes in the NAS Parallel Benchmarks
are given in the technical report [3].

Next, three compression optimization passes are performed to
clean up the IR and hence the resulting datatype code. These are:
(1) compress contiguous into parent block length, (2) merge struct
and hindexed types, and (3) compress contiguous into send count.
For example, the right IR in figure 1 depicts the center IR after
compression optimizations have been applied.

The final step is to emit the datatypes as code. Note that in
a compiler setting the target language can be different from the
source language. For example, the source language could be UPC
while the target language could be C with MPI. Hence it is possi-
ble to convert packing code to datatypes and emit these, even if the
source language does not support datatypes. In a refactoring tool
or a source to source compiler for C with MPI, datatype emit in-
volves three stages. First, the datatype construction code is emitted
(optionally with lazy initialization code). For hvector, vector and
contiguous types it is sufficient to emit the datatype definition and
constructor, as shown in figure 1. For struct and hindexed types we
must also emit code that packs the indices. Second, the packing
code consumer (e.g. a send call) must be identified and rewritten to
use the new datatype. Third, a dead code elimination pass must be
run to remove unused packing code.

3. Conclusions
Transfers of noncontiguous data are prevalent in many parallel
codes; efficient scatter-gather capabilities that optimize such trans-
fers and reduce the memory traffic generated by such transfers will
be essential in future HPC architectures. We expect that future high
performance network interfaces and memory controllers will have
enhanced scatter-gather capabilities. This will enable direct trans-
fer of noncontiguous data from memory to the network interface or
to the CPU. Datatypes provide a means of communication between
the executing code and a smart scatter-gather engine. The transfor-
mations we outlined will facilitate this communication—as part of
a compiler, a refactoring tool or a run-time capability.

References
[1] Automatic datatype generation tool download. URL http://people.

csail.mit.edu/fred/datatypes. Last Accessed 12/17/2011.
[2] D. Bailey, T. Harris, W. Saphir, R. Wijngaart, A. Woo, and M. Yarrow.

The NAS parallel benchmarks 2.0. Technical report, NASA, 1995.
[3] F. Kjolstad, T. Hoefler, and M. Snir. A transformation to convert

packing code to compact datatypes for efficient zero-copy data transfer.
Technical report, University of Illinois at Urbana-Champaign, 2011.

[4] R. Ross, N. Miller, and W. Gropp. Implementing fast and reusable
datatype processing. In EuroPVM/MPI, 2003.

[5] G. Santhanaraman, J. Wu, and D. K. Panda. Zero-copy MPI derived
datatype communication over InfiniBand. In EuroPVM/MPI, 2004.

[6] W. Tansey and E. Tilevich. Efficient automated marshaling of C++ data
structures for MPI applications. In IPDPS, 2008.

http://people.csail.mit.edu/fred/datatypes
http://people.csail.mit.edu/fred/datatypes

	Introduction
	Motivating Example
	Related Work

	Efficient Datatype Generation
	 Conclusions

