
Compilation of Modular and General Sparse Workspaces

GENGHAN ZHANG, Stanford University, USA

OLIVIA HSU, Stanford University, USA

FREDRIK KJOLSTAD, Stanford University, USA

Recent years have seen considerable work on compiling sparse tensor algebra expressions. This paper addresses

a shortcoming in that work, namely how to generate e�cient code (in time and space) that scatters values

into a sparse result tensor. We address this shortcoming through a compiler design that generates code that

uses sparse intermediate tensors (sparse workspaces) as e�cient adapters between compute code that scatters

and result tensors that do not support random insertion. Our compiler automatically detects sparse scattering

behavior in tensor expressions and inserts necessary intermediate workspace tensors. We present an algorithm

template for workspace insertion that is the backbone of our code generation algorithm. Our algorithm

template is modular by design, supporting sparse workspaces that span multiple user-de�ned implementations.

Our evaluation shows that sparse workspaces can be up to 27.12× faster than the dense workspaces of prior

work. On the other hand, dense workspaces can be up to 7.58× faster than the sparse workspaces generated

by our compiler in other situations, which motivates our compiler design that supports both. Our compiler

produces sequential code that is competitive with hand-optimized linear and tensor algebra libraries on the

expressions they support, but that generalizes to any other expression. Sparse workspaces are also more

memory e�cient than dense workspaces as they compress away zeros. This compression can asymptotically

decrease memory usage, enabling tensor computations on data that would otherwise run out of memory.

CCS Concepts: • Software and its engineering → Domain speci�c languages; Source code generation.

Additional Key Words and Phrases: sparse tensor algebra, compilation, sparse workspaces, code composition

ACM Reference Format:

Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad. 2024. Compilation ofModular andGeneral SparseWorkspaces.

Proc. ACM Program. Lang. 8, PLDI, Article 196 (June 2024), 26 pages. https://doi.org/10.1145/3656426

1 INTRODUCTION

Sparse tensor algebra is an important class of computation used in various applications [8, 34, 36,
40, 41, 48]. It generalizes linear algebra to higher-order tensors, where the tensors may be dense
or sparse. Domain-speci�c sparse tensor algebra compilers [39, 74, 83, 87] automatically generate
and optimize sparse tensor algebra code. These compilers are becoming more prevalent because
they can generate codes for the large combination of tensor algebra expressions, compressed data
structures, optimizations, and hardware backends that are not supported by libraries [30, 79, 81, 85].

However, there is a hole in the above sparse compiler work: the sparse scattering problem. Sparse
scattering happens when a sparse result tensor is written to in an arbitrary order. This is a common
problem in sparse tensor algebra [49, 58, 82]. Figure 1 shows a concrete example of sparse scattering.
In this example, the tensor component (or element) needs to be inserted in front of components that
have already been placed. Speci�cally, the tensor component generated in state (d) has coordinates
that are lexicographically smaller than the coordinates from states (a)–(c). However, the result

Authors’ addresses: Genghan Zhang, Stanford University, USA, zgh23@stanford.edu; Olivia Hsu, Stanford University, USA,

owhsu@stanford.edu; Fredrik Kjolstad, Stanford University, USA, kjolstad@stanford.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART196

https://doi.org/10.1145/3656426

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-3866-8167
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/0000-0002-2267-903X
https://doi.org/10.1145/3656426
https://orcid.org/0000-0002-3866-8167
https://orcid.org/
https://orcid.org/0000-0002-2267-903X
https://doi.org/10.1145/3656426
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656426&domain=pdf&date_stamp=2024-06-20

196:2 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

(a)

0 0 1 0

0 0 0 0

3 0 42

0 1 2 3

0

1

2

Level K

L
e
v
e
l

I

0 0 1 0

0 0 4 3

2 0 0

0 05

0 1 2 3

0

1

2

3

Level J

L
e
v
e
l

K

0

0

0 0 0 0

0 0 0 0

0 3 00

0 1 2 3

0

1

2

Level J

L
e
v
e
l

I 0 0 0 0

0 0 0 0

0 11 00

0 0 0 0

0 0 0 0

0 11 60

2 0 0 0

0 0 0 0

0 11 60

0 1 1 4

0 1 2 3

2 11 620

position

coordinate

value

(b) (c) (d) Compressed Storage

forall
<latexit sha1_base64="nOqmuiZXEERDV8Lcyc+JtvpF8jo=">AAACBXicbZC7SgNBFIbPxluMt1VLLQaDYBV2JahYhaQRbCKYC2RDmJ3MJkNmZ5eZWSEsaWx8FRsLRWx9BzvfxtkkhSb+MPDxn3OYc34/5kxpx/m2ciura+sb+c3C1vbO7p69f9BUUSIJbZCIR7LtY0U5E7Shmea0HUuKQ5/Tlj+qZfXWA5WKReJej2PaDfFAsIARrI3Vs4+9EOuhH6SjiccEuu1VkUdwbKB2XejZRafkTIWWwZ1DEeaq9+wvrx+RJKRCE46V6rhOrLsplpoRTicFL1E0xmSEB7RjUOCQqm46vWKCTo3TR0EkzRMaTd3fEykOlRqHvunMdlaLtcz8r9ZJdHDVTZmIE00FmX0UJBzpCGWRoD6TlGg+NoCJZGZXRIZYYqJNcFkI7uLJy9A8L7kXpfJduVipzuPIwxGcwBm4cAkVuIE6NIDAIzzDK7xZT9aL9W59zFpz1nzmEP7I+vwBcc2XPQ==</latexit>

k ∈ KB ∩KC :

forall
<latexit sha1_base64="rB5bDnIw9k0KfY4ZMkbBVq3ehJQ=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmkqLgqdaO7CvYBTQiT6aQdOpmEmYlQQv0VNy4UceuHuPNvTNostPXAwOGce7lnjh9zprRlfRultfWNza3ydmVnd2//wDw86qookYR2SMQj2fexopwJ2tFMc9qPJcWhz2nPn9zkfu+RSsUi8aCnMXVDPBIsYATrTPLMqhNiPfaDlM0cJtCd17queGbNqltzoFViF6QGBdqe+eUMI5KEVGjCsVID24q1m2KpGeF0VnESRWNMJnhEBxkVOKTKTefhZ+g0U4YoiGT2hEZz9fdGikOlpqGfTeZR1bKXi/95g0QHV27KRJxoKsjiUJBwpCOUN4GGTFKi+TQjmEiWZUVkjCUmOusrL8Fe/vIq6Z7X7Yt6475Ra7aKOspwDCdwBjZcQhNuoQ0dIDCFZ3iFN+PJeDHejY/FaMkodqrwB8bnD6vylCI=</latexit>

i ∈ IB :

forall
<latexit sha1_base64="UVyfBs4D9sjWrI+t3x8cK4wjM+A=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmkqLgqdiOuKtgHNCFMppN27GQSZiZCCfVX3LhQxK0f4s6/MWmz0OqBgcM593LPHD/mTGnL+jJKK6tr6xvlzcrW9s7unrl/0FVRIgntkIhHsu9jRTkTtKOZ5rQfS4pDn9OeP2nlfu+BSsUicaenMXVDPBIsYATrTPLMqhNiPfaD9H7mMIFuvNZlxTNrVt2aA/0ldkFqUKDtmZ/OMCJJSIUmHCs1sK1YuymWmhFOZxUnUTTGZIJHdJBRgUOq3HQefoaOM2WIgkhmT2g0V39upDhUahr62WQeVS17ufifN0h0cOGmTMSJpoIsDgUJRzpCeRNoyCQlmk8zgolkWVZExlhiorO+8hLs5S//Jd3Tun1Wb9w2as2roo4yHMIRnIAN59CEa2hDBwhM4Qle4NV4NJ6NN+N9MVoyip0q/ILx8Q2wjpQl</latexit>

j ∈ JC :

k = 0

i = 2

j = 2

A(2,2)+=B(2,0)*C(0,2) A(2,2)+=B(2,1)*C(1,2) A(2,3)+=B(2,1)*C(1,3) A(0,0)+=B(0,2)*C(2,0)

Deduplicate Append Insert

Sparse Iteration

<latexit sha1_base64="f9O/JBD4I2HoKd2BVdi+U5Lzg3U=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0UQhJKIr41Q243LCvYBbQiT6aSdZjIJMxOhhGzd+CtuXCji1j9w5984abvQ1gMXDufcy733eDGjUlnWt1FYWl5ZXSuulzY2t7Z3zN29lowSgUkTRywSHQ9JwignTUUVI51YEBR6jLS9oJ777QciJI34vRrHxAnRgFOfYqS05Jrwxk3pKIO9EKmhICw9ya5hTWtBVnfTYJS5ZtmqWBPARWLPSBnM0HDNr14/wklIuMIMSdm1rVg5KRKKYkayUi+RJEY4QAPS1ZSjkEgnnXySwSOt9KEfCV1cwYn6eyJFoZTj0NOd+cFy3svF/7xuovwrJ6U8ThTheLrITxhUEcxjgX0qCFZsrAnCgupbIR4igbDS4ZV0CPb8y4ukdVqxLyrnd2flam0WRxEcgENwDGxwCargFjRAE2DwCJ7BK3gznowX4934mLYWjNnMPvgD4/MHXHKaJQ==</latexit>

Aij += BikCkj

<latexit sha1_base64="BVHpbRh2zUYIiu/3zOGBVoVc3hM=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAiuyoz4Wpa6cVnBPqAdSibNtLGZZEgyQhn6D25cKOLW/3Hn35i2s9DWAxcO59zLvfeEieDGet43WlldW9/YLGwVt3d29/ZLB4dNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0O/VbT0wbruSDHScsiMlA8ohTYp3UrPUyPpr0SmWv4s2Al4mfkzLkqPdKX92+omnMpKWCGNPxvcQGGdGWU8EmxW5qWELoiAxYx1FJYmaCbHbtBJ86pY8jpV1Ji2fq74mMxMaM49B1xsQOzaI3Ff/zOqmNboKMyyS1TNL5oigV2Co8fR33uWbUirEjhGrubsV0SDSh1gVUdCH4iy8vk+Z5xb+qXN5flKu1PI4CHMMJnIEP11CFO6hDAyg8wjO8whtS6AW9o4956wrKZ47gD9DnD58Fjy0=</latexit>

Bik

<latexit sha1_base64="eMes2b12IdAg3Jr6mDEYefokbbA=">AAAB7XicbVDLSgNBEOyNrxhfqx69DAbBU9gVX8dgLh4jmAckS5idzCaTzM4sM7NCWPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dYcKZNp737RTW1jc2t4rbpZ3dvf0D9/CoqWWqCG0QyaVqh1hTzgRtGGY4bSeK4jjktBWOazO/9USVZlI8mklCgxgPBIsYwcZKzVovG4+mPbfsVbw50Crxc1KGHPWe+9XtS5LGVBjCsdYd30tMkGFlGOF0WuqmmiaYjPGAdiwVOKY6yObXTtGZVfooksqWMGiu/p7IcKz1JA5tZ4zNUC97M/E/r5Oa6DbImEhSQwVZLIpSjoxEs9dRnylKDJ9Ygoli9lZEhlhhYmxAJRuCv/zyKmleVPzrytXDZbl6l8dRhBM4hXPw4QaqcA91aACBETzDK7w50nlx3p2PRWvByWeO4Q+czx+iFY8v</latexit>

Ckj

k = 1

i = 2

j = 2

k = 1

i = 2

j = 3

k = 2

i = 0

j = 0

Fig. 1. A second-order dense workspace for outer-product matrix multiplication (SpGEMM). The above

for-loop pseudo codes show the sparse iterations that generate tensor components. Red numbers represent

newly generated coordinates and values. The workspace must support three behaviors: deduplicating (a→ b),

appending (b→ c), and inserting (c→ d). The computation utilizes a workspace since the final compressed

data structures do not support insertion. Furthermore, the result storage should be compressed for memory

e�iciency since the final output has only four values.

Input

Iteration
Deduplication/

Sort

Sparse Workspace

(0,0,2) (2,1,20) (2,2,11) (2,3,6)

Input tensor components

(K,I,Bval) (K,J,Cval)
(0,2,3) * (0,2,1)
(1,2,2) * (1,2,4)
(1,2,2) * (1,3,3)
(2,0,1) * (2,0,2)
(3,2,4) * (3,1,5)

Multiplied components

(K,I,J,val)
(0,2,2, 3)
(1,2,2, 8)
(1,2,3, 6)
(2,0,0, 2)
(3,2,1,20)

<latexit sha1_base64="feYJlqRAt9N6RJRnwkNptAVwjek=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIehGKXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7qZ+6wmV5rF8MOME/YgOJA85o8ZK9ZteqexW3BnIMvFyUoYctV7pq9uPWRqhNExQrTuemxg/o8pwJnBS7KYaE8pGdIAdSyWNUPvZ7NAJObVKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0a9LnCpkRY0soU9zeStiQKsqMzaZoQ/AWX14mzfOKd1nx6hfl6m0eRwGO4QTOwIMrqMI91KABDBCe4RXenEfnxXl3PuatK04+cwR/4Hz+AI7FjMc=</latexit>

= Format

0 0 1 0

0 0 0 0

3 0 42

0 1 2 3

0

1

2

Level K

L
e
v
e
l

I

0 0 1 0

0 0 4 3

2 0 0

0 05

0 1 2 3

0

1

2

3

Level J

L
e
v
e
l

K

0

0

Component

(2,1,2)

0 1 1 4

0 1 2 3

2 11 620

position

coordinate

value

Compressed Result

Output components

(I,J,Aval)

<latexit sha1_base64="BVHpbRh2zUYIiu/3zOGBVoVc3hM=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAiuyoz4Wpa6cVnBPqAdSibNtLGZZEgyQhn6D25cKOLW/3Hn35i2s9DWAxcO59zLvfeEieDGet43WlldW9/YLGwVt3d29/ZLB4dNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0O/VbT0wbruSDHScsiMlA8ohTYp3UrPUyPpr0SmWv4s2Al4mfkzLkqPdKX92+omnMpKWCGNPxvcQGGdGWU8EmxW5qWELoiAxYx1FJYmaCbHbtBJ86pY8jpV1Ji2fq74mMxMaM49B1xsQOzaI3Ff/zOqmNboKMyyS1TNL5oigV2Co8fR33uWbUirEjhGrubsV0SDSh1gVUdCH4iy8vk+Z5xb+qXN5flKu1PI4CHMMJnIEP11CFO6hDAyg8wjO8whtS6AW9o4956wrKZ47gD9DnD58Fjy0=</latexit>

Bik

<latexit sha1_base64="eMes2b12IdAg3Jr6mDEYefokbbA=">AAAB7XicbVDLSgNBEOyNrxhfqx69DAbBU9gVX8dgLh4jmAckS5idzCaTzM4sM7NCWPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dYcKZNp737RTW1jc2t4rbpZ3dvf0D9/CoqWWqCG0QyaVqh1hTzgRtGGY4bSeK4jjktBWOazO/9USVZlI8mklCgxgPBIsYwcZKzVovG4+mPbfsVbw50Crxc1KGHPWe+9XtS5LGVBjCsdYd30tMkGFlGOF0WuqmmiaYjPGAdiwVOKY6yObXTtGZVfooksqWMGiu/p7IcKz1JA5tZ4zNUC97M/E/r5Oa6DbImEhSQwVZLIpSjoxEs9dRnylKDJ9Ygoli9lZEhlhhYmxAJRuCv/zyKmleVPzrytXDZbl6l8dRhBM4hXPw4QaqcA91aACBETzDK7w50nlx3p2PRWvByWeO4Q+czx+iFY8v</latexit>

Ckj

Fig. 2. A second-order sparse workspace for the outer-product SpGEMM in Figure 1. The colored nonzero

components of the input tensors show a correspondence to their respective input tensor components. In a

second-order workspace, each (I,J,val) tensor component is indexed by two variables I and J.

matrix is stored in a compressed data structure, which does not permit e�cient insertion into this
location. Therefore, a temporary tensor is necessary as an adapter between the computed matrix
components and the result tensor storage. Such a temporary is called a workspace.
Figure 1 and Figure 2 show examples of a dense and a sparse workspace, respectively. A dense

workspace holds the temporary values in a dense arraywhereas a sparseworkspace stores temporary
values in compressed data structures. In order to store a tensor component (both coordinates and
the value) into any workspace, the value must �rst be calculated from the inputs. The value is
then summed with the existing value in the workspace during the deduplication step. Then, the
deduplicated value is either appended to the end of or inserted into the middle of the workspace
data structure. An example of this process is shown in Figure 1. In the case of a sparse workspace
(as in Figure 2), it is common to only append values to the compressed data structure (without
insertion) for e�ciency. In order to ensure that the values end up in the correct output order, sparse
workspace algorithms include a sorting step.

A sparse workspace is essential when sparse scattering into high-order tensors because dense
higher-order storage would require too much memory. Sparse tensors are often asymptotically
sparse, which empirically implies that less than 1% of values are nonzero [37]. For example, multi-
plying the “marine1” matrix (from chemical oceanography [42]) by itself transposed would require
a dense workspace that is 5132× larger than the sparse workspace. Beyond SpGEMM, it is com-
mon to have higher-order workspaces when the input and output tensors are higher-order, as in
computation like sparse convolution [82].
We would like to support sparse workspaces in sparse compilers, but there are two challenges:

(1) The compiler should be modular to allow users to automatically plug in and combine various
optimization strategies. Workspace policies are diverse [8, 12, 18], so modularity is essential
for generating code that is competitive with libraries.

(2) The compiler should be su�ciently general so as to produce code for any expressions with
sparse scattering. That means the sparse workspaces generated by the compiler must handle
tensors of any order and with any compression format.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

Compilation of Modular and General Sparse Workspaces 196:3

To address these challenges, we propose an algorithm template for sparse workspaces and
a compiler that integrates hand-written implementations of the template functions to generate
correct and e�cient code. Generating code by combining templated code with �lled-in, user-
written functions (also called codelets or stencils) has been used throughout history. This idea
of code composition through templates is widely used in compilers for domain-speci�c languages
(DSLs) [73]. Speci�c examples include compiling relational algebra queries [55], FFTs [23], and more
recently tensor algebra [7, 32] and neural networks [4, 13]. Beyond DSLs, general programming
systems have also bene�ted from similar compositional methods through techniques like template
JIT [21, 22, 61, 80]. We are, however, the �rst to propose a modular template-based approach for
compiling sparse tensor algebra expressions with scattering behavior.

For the algorithm template, we design a modular representation of sparse workspaces expressive
enough to describe several prior, e�cient sparse workspace policies. For the compiler, we incor-
porate our representation into the TACO system [39] to provide general support for generating
sequential implementations of sparse tensor algebra expressions with sparse workspaces. We design
user interfaces at di�erent levels of our system to express new policies. Our contributions are:

• An analysis framework that categorizes sparse tensor algebra expressions with respect to
how they assemble the result.

• An algorithm template for sparse workspace generation. The algorithm generalizes to
workspaces implemented with various compressed data structures and optimization policies.

• An automatic workspace insertion algorithm that transforms expressions to include those
workspaces that are necessary for correctness.

• Extensions to the TACO programming model and intermediate representation to generate
code for expressions with sparse workspaces.

We evaluate these contributions by comparing them against current dense workspace techniques.
Our evaluation shows that sparse and dense workspaces do not dominate each other but are useful
in di�erent situations, motivating the need for both approaches. Speci�cally, dense workspaces can
perform up to 7.58× faster than sparse workspaces, whereas sparse workspaces can perform up to
27.12× faster than dense ones, depending on the input data. Our compiler can generate general
tensor algebra codes with both sparse and dense workspaces while still producing code competitive
with hand-optimized linear and tensor algebra libraries. Furthermore, our compiler produces code
with a 3.6× improvement in memory footprint on average (geomean) when compared to dense
workspaces that �t in our machine’s memory. The sparse workspace code generated by our compiler
is not limited by the machine’s memory for any input data, but the dense workspace is unable
to �t in memory for 10 out of the 60 input matrices run. Therefore, our compiler scales better
both in performance and memory footprint for higher-order and larger data sizes. Though our
approach generates sequential sparse workspace code, it provides a foundation for developing a
code generator that also supports parallel sparse workspace codes.

2 SPARSE TENSOR ALGEBRA EXPRESSION TAXONOMY

We introduce an analysis framework to identify when sparse scattering occurs in sparse tensor
algebra expressions. Sparse scattering can be classi�ed based on the relationship between the tensor
access order and the expression loop order. These orderings, de�ned in Section 2.1, determine
how input tensors are accessed and how the result tensor is assembled. Based on these orders, we
classify sparse tensor algebra expressions along two axes (Section 2.2) and place our work in the
context of prior work by showing how they lack the ability to handle sparse scattering (Section 2.3).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

196:4 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

Index Variable 8 Constant 2 Tensor T

Access 0 ::= T8∗
Expression 4 ::= 0 | 2 | 4 + 4 | 4 · 4 | . . .

Statement (::= ∀8∗ (| 0 = 4 | 0 += 4 | . . .

Fig. 3. A simplified concrete index notation (CIN)

syntax with no scheduling relationships.

0 0 1

0 0

3 2

0 1 2 3

0

1

2

Level J

L
e
v
e
l

I

0

0

0

0

4

3size

pos

crd

0 1 1 4

2 0 1 3

1 3 2 4val

CSRB(i, j)

4size

pos

crd

20 1 3

2 22 0

3 42 1val

CSC

4

Dense
(Level I)

Compressed
(Level J)

Dense
(Level J)

Compressed
(Level I)

Fig. 4. Two example tensor level formats for compressed

sparse row (CSR) and compressed sparse column (CSC).

Appending

Scattering

0 1 2 n
Computation

Ordering

(a) (b) (c)

…

(d)

…

(h)

<latexit sha1_base64="8LVrqJucQl9xNwsjgr7UF8xAfX0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bssV+qVUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4+7jMo=</latexit>

=

<latexit sha1_base64="MFoILQeYqcoBEu5m46rJHDjnvKc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOZpMhszPLTK8QQj7CiwdFvPo93vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0N/NbT9xYodUjjlMeJnSgRCwYRSe1uhpFwm2vXPGr/hxklQQ5qUCOeq/81e1rliVcIZPU2k7gpxhOqEHBJJ+WupnlKWUjOuAdRxV1S8LJ/NwpOXNKn8TauFJI5urviQlNrB0nketMKA7tsjcT//M6GcY34USoNEOu2GJRnEmCmsx+J31hOEM5doQyI9ythA2poQxdQiUXQrD88ippXlSDq+rlw2WldpvHUYQTOIVzCOAaanAPdWgAgxE8wyu8ean34r17H4vWgpfPHMMfeJ8/iNmPtg==</latexit>

⊗ ()
T

<latexit sha1_base64="8LVrqJucQl9xNwsjgr7UF8xAfX0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bssV+qVUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4+7jMo=</latexit>

=
<latexit sha1_base64="8LVrqJucQl9xNwsjgr7UF8xAfX0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bssV+qVUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4+7jMo=</latexit>

=

<latexit sha1_base64="2M9Uun3jhzFBOkbVOCuyBd1NlPo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoxWMF0xbaUDabTbt0sxt2J0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZelAlu0PO+ndLa+sbmVnm7srO7t39QPTxqGZVrygKqhNKdiBgmuGQBchSsk2lG0kiwdjS6m/ntJ6YNV/IRxxkLUzKQPOGUoJWCnooV9qs1r+7N4a4SvyA1KNDsV796saJ5yiRSQYzp+l6G4YRo5FSwaaWXG5YROiID1rVUkpSZcDI/duqeWSV2E6VtSXTn6u+JCUmNGaeR7UwJDs2yNxP/87o5JjfhhMssRybpYlGSCxeVO/vcjblmFMXYEkI1t7e6dEg0oWjzqdgQ/OWXV0nrou5f1S8fLmuN2yKOMpzAKZyDD9fQgHtoQgAUODzDK7w50nlx3p2PRWvJKWaO4Q+czx/uTI7H</latexit>

!

(e)

ji
<latexit sha1_base64="8LVrqJucQl9xNwsjgr7UF8xAfX0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bssV+qVUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4+7jMo=</latexit>

=

<latexit sha1_base64="2DfdF1l21+C75cp/xOVABOCQskw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqreZbV2X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuRmPPQ==</latexit>

×

<latexit sha1_base64="sP4RgX2vSUmDAaWEzKX/4L3wXig=">AAACDHicbVDLSgMxFM3UV62vqks3wSK4kDIjRcVVqRuXFewDOkPJpGkbmpkMyR21DPMBbvwVNy4UcesHuPNvTNtZaOuBwOGcc7m5x48E12Db31ZuaXlldS2/XtjY3NreKe7uNbWMFWUNKoVUbZ9oJnjIGsBBsHakGAl8wVr+6Grit+6Y0lyGtzCOmBeQQcj7nBIwUrdYqrnAHiC5TN2En4zc1FV8MASilLzHmWRSdtmeAi8SJyMllKHeLX65PUnjgIVABdG649gReAlRwKlgacGNNYsIHZEB6xgakoBpL5kek+Ijo/RwXyrzQsBT9fdEQgKtx4FvkgGBoZ73JuJ/XieG/oWX8DCKgYV0tqgfCwwST5rBPa4YBTE2hFDFzV8xHRJFKJj+CqYEZ/7kRdI8LTtn5cpNpVStZXXk0QE6RMfIQeeoiq5RHTUQRY/oGb2iN+vJerHerY9ZNGdlM/voD6zPH1Hgm8w=</latexit>

B:{i, k} → {i, k}
<latexit sha1_base64="9RCZzYLrqILKI5h3ohQOgdzCUBc=">AAACDHicbVDLSsNAFJ34rPVVdelmsAguSkmkqLgqduOygn1AE8pkOmmnnTyYuVFLyAe48VfcuFDErR/gzr9x2mahrQcGDuecy5173EhwBab5bSwtr6yurec28ptb2zu7hb39pgpjSVmDhiKUbZcoJnjAGsBBsHYkGfFdwVruqDbxW3dMKh4GtzCOmOOTfsA9TgloqVso1mxgD5BcpnYyKg3t1Ja8PwAiZXiP7WRYGtmpTpllcwq8SKyMFFGGerfwZfdCGvssACqIUh3LjMBJiAROBUvzdqxYROiI9FlH04D4TDnJ9JgUH2ulh71Q6hcAnqq/JxLiKzX2XZ30CQzUvDcR//M6MXgXTsKDKAYW0NkiLxYYQjxpBve4ZBTEWBNCJdd/xXRAJKGg+8vrEqz5kxdJ87RsnZUrN5Vi9SqrI4cO0RE6QRY6R1V0jeqogSh6RM/oFb0ZT8aL8W58zKJLRjZzgP7A+PwBVqubzw==</latexit>

C:{k, j} → {j, k}
<latexit sha1_base64="sP4RgX2vSUmDAaWEzKX/4L3wXig=">AAACDHicbVDLSgMxFM3UV62vqks3wSK4kDIjRcVVqRuXFewDOkPJpGkbmpkMyR21DPMBbvwVNy4UcesHuPNvTNtZaOuBwOGcc7m5x48E12Db31ZuaXlldS2/XtjY3NreKe7uNbWMFWUNKoVUbZ9oJnjIGsBBsHakGAl8wVr+6Grit+6Y0lyGtzCOmBeQQcj7nBIwUrdYqrnAHiC5TN2En4zc1FV8MASilLzHmWRSdtmeAi8SJyMllKHeLX65PUnjgIVABdG649gReAlRwKlgacGNNYsIHZEB6xgakoBpL5kek+Ijo/RwXyrzQsBT9fdEQgKtx4FvkgGBoZ73JuJ/XieG/oWX8DCKgYV0tqgfCwwST5rBPa4YBTE2hFDFzV8xHRJFKJj+CqYEZ/7kRdI8LTtn5cpNpVStZXXk0QE6RMfIQeeoiq5RHTUQRY/oGb2iN+vJerHerY9ZNGdlM/voD6zPH1Hgm8w=</latexit>

B:{i, k} → {i, k}
<latexit sha1_base64="QaYfeoA6lTum1fiFaXTcuv0pzsc=">AAACDHicbVDLSgMxFM34rPVVdekmWAQXUmakqLgqduOygn1AZyiZNG1jM5khuaOWYT7Ajb/ixoUibv0Ad/6NaTsLbT0QOJxzLjf3+JHgGmz721pYXFpeWc2t5dc3Nre2Czu7DR3GirI6DUWoWj7RTHDJ6sBBsFakGAl8wZr+sDr2m3dMaR7KGxhFzAtIX/IepwSM1CkUqy6wB0guUjcZHt+6qat4fwBEqfAeZ5JJ2SV7AjxPnIwUUYZap/DldkMaB0wCFUTrtmNH4CVEAaeCpXk31iwidEj6rG2oJAHTXjI5JsWHRuniXqjMk4An6u+JhARajwLfJAMCAz3rjcX/vHYMvXMv4TKKgUk6XdSLBYYQj5vBXa4YBTEyhFDFzV8xHRBFKJj+8qYEZ/bkedI4KTmnpfJ1uVi5zOrIoX10gI6Qg85QBV2hGqojih7RM3pFb9aT9WK9Wx/T6IKVzeyhP7A+fwBWrZvP</latexit>

C:{k, j} → {k, j}
<latexit sha1_base64="QaYfeoA6lTum1fiFaXTcuv0pzsc=">AAACDHicbVDLSgMxFM34rPVVdekmWAQXUmakqLgqduOygn1AZyiZNG1jM5khuaOWYT7Ajb/ixoUibv0Ad/6NaTsLbT0QOJxzLjf3+JHgGmz721pYXFpeWc2t5dc3Nre2Czu7DR3GirI6DUWoWj7RTHDJ6sBBsFakGAl8wZr+sDr2m3dMaR7KGxhFzAtIX/IepwSM1CkUqy6wB0guUjcZHt+6qat4fwBEqfAeZ5JJ2SV7AjxPnIwUUYZap/DldkMaB0wCFUTrtmNH4CVEAaeCpXk31iwidEj6rG2oJAHTXjI5JsWHRuniXqjMk4An6u+JhARajwLfJAMCAz3rjcX/vHYMvXMv4TKKgUk6XdSLBYYQj5vBXa4YBTEyhFDFzV8xHRBFKJj+8qYEZ/bkedI4KTmnpfJ1uVi5zOrIoX10gI6Qg85QBV2hGqojih7RM3pFb9aT9WK9Wx/T6IKVzeyhP7A+fwBWrZvP</latexit>

C:{k, j} → {k, j}
<latexit sha1_base64="ghFaSbe02ct3r96NGMuGWwxkvCk=">AAACDHicbVDLSsNAFJ34rPVVdelmsAguSkmkqLgqdeOygn1AE8pkOmmHTB7M3Kgl5APc+CtuXCji1g9w5984bbPQ1gMDh3PO5c49biy4AtP8NpaWV1bX1gsbxc2t7Z3d0t5+W0WJpKxFIxHJrksUEzxkLeAgWDeWjASuYB3Xv5r4nTsmFY/CWxjHzAnIMOQepwS01C+VGzawB0gvMzvlFd/ObMmHIyBSRvfYTv0KtzOdMqvmFHiRWDkpoxzNfunLHkQ0CVgIVBClepYZg5MSCZwKlhXtRLGYUJ8MWU/TkARMOen0mAwfa2WAvUjqFwKeqr8nUhIoNQ5cnQwIjNS8NxH/83oJeBdOysM4ARbS2SIvERgiPGkGD7hkFMRYE0Il13/FdEQkoaD7K+oSrPmTF0n7tGqdVWs3tXK9kddRQIfoCJ0gC52jOrpGTdRCFD2iZ/SK3own48V4Nz5m0SUjnzlAf2B8/gBR5JvM</latexit>

B:{i, k} → {k, i}

<latexit sha1_base64="qkG1naVC0Mw+kqED/sg8bIUMAsA=">AAACCXicbVA7SwNBEJ6Lrxhfp5Y2i0GwCncS1EaISWMZwTwgOY69zV6yZu/B7p4QjrQ2/hUbC0Vs/Qd2/hs3lys08YPd+fhmhpn5vJgzqSzr2yisrK6tbxQ3S1vbO7t75v5BW0aJILRFIh6Jrocl5SykLcUUp91YUBx4nHa8cWOW7zxQIVkU3qlJTJ0AD0PmM4KVllwT9f1IYM7dlN1P0XUWrupZaGS/a5atipUBLRM7J2XI0XTNr/4gIklAQ0U4lrJnW7FyUiwUI5xOS/1E0hiTMR7SnqYhDqh00uySKTrRygDplfQLFcrU3x0pDqScBJ6uDLAaycXcTPwv10uUf+mkLIwTRUMyH+QnHKkIzWxBAyYoUXyiCSaC6V0RGWGBidLmlbQJ9uLJy6R9VrHPK9XbarlWz+0owhEcwynYcAE1uIEmtIDAIzzDK7wZT8aL8W58zEsLRt5zCH9gfP4AGbuamw==</latexit>

∀ijAij = BijCij

<latexit sha1_base64="3j4ign8UaJpcsi6GdYKadwFV8vI=">AAACB3icbVDLSsNAFJ3UV62vqEtBBovgqiRS1I1Q243LCvYBbQiT6aSddjIJMxOhhOzc+CtuXCji1l9w5984TbPQ1gPDPZxzL3Pv8SJGpbKsb6Owsrq2vlHcLG1t7+zumfsHbRnGApMWDlkouh6ShFFOWooqRrqRICjwGOl4k8bM7zwQIWnI79U0Ik6Ahpz6FCOlJdc87vuhQIy5CR2n8CYr13Vd0oabjFPXLFsVKwNcJnZOyiBH0zW/+oMQxwHhCjMkZc+2IuUkSCiKGUlL/ViSCOEJGpKephwFRDpJdkcKT7UygHoh/biCmfp7IkGBlNPA050BUiO56M3E/7xerPwrJ6E8ihXheP6RHzOoQjgLBQ6oIFixqSYIC6p3hXiEBMJKR1fSIdiLJy+T9nnFvqhU76rlWj2PowiOwAk4Aza4BDVwC5qgBTB4BM/gFbwZT8aL8W58zFsLRj5zCP7A+PwBd12ZtA==</latexit>

∀ijAij = BiCj

(f)

j

i
<latexit sha1_base64="8LVrqJucQl9xNwsjgr7UF8xAfX0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bssV+qVUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4+7jMo=</latexit>

=

<latexit sha1_base64="2DfdF1l21+C75cp/xOVABOCQskw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqreZbV2X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuRmPPQ==</latexit>

×

(g)

ji

<latexit sha1_base64="8LVrqJucQl9xNwsjgr7UF8xAfX0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bssV+qVUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4+7jMo=</latexit>

=

<latexit sha1_base64="2DfdF1l21+C75cp/xOVABOCQskw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqreZbV2X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuRmPPQ==</latexit>

×

<latexit sha1_base64="X8Kso/NhgM+AfYn7d2L90BRyCCU=">AAACBXicbVDLSsNAFL3xWesr6lIXg0VwVRIp6kaodeOygn1AG8JkOmmnnTyYmQgldOPGX3HjQhG3/oM7/8ZpmoW2Hhg4c8693HuPF3MmlWV9G0vLK6tr64WN4ubW9s6uubfflFEiCG2QiEei7WFJOQtpQzHFaTsWFAcepy1vdDP1Ww9USBaF92ocUyfA/ZD5jGClJdc86vqRwJy7KRtO0LWbDtkEXaFa9nfNklW2MqBFYuekBDnqrvnV7UUkCWioCMdSdmwrVk6KhWKE00mxm0gaYzLCfdrRNMQBlU6aXTFBJ1rpIb2OfqFCmfq7I8WBlOPA05UBVgM5703F/7xOovxLJ2VhnCgaktkgP+FIRWgaCeoxQYniY00wEUzvisgAC0yUDq6oQ7DnT14kzbOyfV6u3FVK1VoeRwEO4RhOwYYLqMIt1KEBBB7hGV7hzXgyXox342NWumTkPQfwB8bnDwanmEY=</latexit>

∀ijAji = Bij

<latexit sha1_base64="rkxFUTUhmOSHhCUNqJgJCl1GZoQ=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRgECwl3ElSsQmwsI5gPyB1hb7NJ1uzdHrtzSjjS2PhXbCwUsfU/2Plv3CRXaPTBwOO9GWbmBbHgGhzny8otLC4tr+RXC2vrG5tb9vZOQ8tEUVanUkjVCohmgkesDhwEa8WKkTAQrBkMLyd+844pzWV0A6OY+SHpR7zHKQEjdez96oWX8uNbb+wp3h8AUUre40zq2EWn5EyB/xI3I0WUodaxP72upEnIIqCCaN12nRj8lCjgVLBxwUs0iwkdkj5rGxqRkGk/nX4xxodG6eKeVKYiwFP150RKQq1HYWA6QwIDPe9NxP+8dgK9cz/lUZwAi+hsUS8RGCSeRIK7XDEKYmQIoYqbWzEdEEUomOAKJgR3/uW/pHFSck9L5etysVLN4sijPXSAjpCLzlAFXaEaqiOKHtATekGv1qP1bL1Z77PWnJXN7KJfsD6+ATnRmGs=</latexit>

B : {i, j} → {i, j}
<latexit sha1_base64="/e0seRIHRh6zGXVCgX/eRJkhvm0=">AAACBXicbVA9SwNBEJ2LXzF+nVpqsRgECwl3ElSsgmksI5gPyB1hb7NJ1uzdHrt7SjjS2PhXbCwUsfU/2Plv3CRXaPTBwOO9GWbmBTFnSjvOl5VbWFxaXsmvFtbWNza37O2dhhKJJLROBBeyFWBFOYtoXTPNaSuWFIcBp81gWJ34zTsqFRPRjR7F1A9xP2I9RrA2Usfer154KTu+9caeZP2BxlKKe5RJHbvolJwp0F/iZqQIGWod+9PrCpKENNKEY6XarhNrP8VSM8LpuOAlisaYDHGftg2NcEiVn06/GKNDo3RRT0hTkUZT9edEikOlRmFgOkOsB2rem4j/ee1E9879lEVxomlEZot6CUdaoEkkqMskJZqPDMFEMnMrIgMsMdEmuIIJwZ1/+S9pnJTc01L5ulysXGZx5GEPDuAIXDiDClxBDepA4AGe4AVerUfr2Xqz3metOSub2YVfsD6+ATtwmGw=</latexit>

C : {i, j} → {i, j}
<latexit sha1_base64="Z27CYMc/a/tg0wRxhH88qV4r96s=">AAACBXicbVA9SwNBEJ2LXzF+nVpqsRgECwl3ElSsojaWEcwH5I6wt9kka/Zuj909JRxpbPwrNhaK2Pof7Pw3bpIrNPpg4PHeDDPzgpgzpR3ny8rNzS8sLuWXCyura+sb9uZWXYlEElojggvZDLCinEW0ppnmtBlLisOA00YwuBz7jTsqFRPRjR7G1A9xL2JdRrA2UtvePT/zUnZ46408yXp9jaUU9yiT2nbRKTkToL/EzUgRMlTb9qfXESQJaaQJx0q1XCfWfoqlZoTTUcFLFI0xGeAebRka4ZAqP518MUL7RumgrpCmIo0m6s+JFIdKDcPAdIZY99WsNxb/81qJ7p76KYviRNOITBd1E460QONIUIdJSjQfGoKJZOZWRPpYYqJNcAUTgjv78l9SPyq5x6XydblYucjiyMMO7MEBuHACFbiCKtSAwAM8wQu8Wo/Ws/VmvU9bc1Y2sw2/YH18AzgymGo=</latexit>

A : {i, j} → {i, j}
<latexit sha1_base64="htwMZqWLzIxtCwjB81DNjTN1dmg=">AAACBXicbVA9SwNBEJ2LXzF+nVpqsRgECwl3ElSsojaWEcwH5I6wt9kka/Zuj909JRxpbPwrNhaK2Pof7Pw3bpIrNPpg4PHeDDPzgpgzpR3ny8rNzS8sLuWXCyura+sb9uZWXYlEElojggvZDLCinEW0ppnmtBlLisOA00YwuBz7jTsqFRPRjR7G1A9xL2JdRrA2UtvePT/z0ttD5o08yXp9jaUU9yiT2nbRKTkToL/EzUgRMlTb9qfXESQJaaQJx0q1XCfWfoqlZoTTUcFLFI0xGeAebRka4ZAqP518MUL7RumgrpCmIo0m6s+JFIdKDcPAdIZY99WsNxb/81qJ7p76KYviRNOITBd1E460QONIUIdJSjQfGoKJZOZWRPpYYqJNcAUTgjv78l9SPyq5x6XydblYucjiyMMO7MEBuHACFbiCKtSAwAM8wQu8Wo/Ws/VmvU9bc1Y2sw2/YH18Azg2mGo=</latexit>

A : {j, i} → {j, i}
<latexit sha1_base64="rkxFUTUhmOSHhCUNqJgJCl1GZoQ=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRgECwl3ElSsQmwsI5gPyB1hb7NJ1uzdHrtzSjjS2PhXbCwUsfU/2Plv3CRXaPTBwOO9GWbmBbHgGhzny8otLC4tr+RXC2vrG5tb9vZOQ8tEUVanUkjVCohmgkesDhwEa8WKkTAQrBkMLyd+844pzWV0A6OY+SHpR7zHKQEjdez96oWX8uNbb+wp3h8AUUre40zq2EWn5EyB/xI3I0WUodaxP72upEnIIqCCaN12nRj8lCjgVLBxwUs0iwkdkj5rGxqRkGk/nX4xxodG6eKeVKYiwFP150RKQq1HYWA6QwIDPe9NxP+8dgK9cz/lUZwAi+hsUS8RGCSeRIK7XDEKYmQIoYqbWzEdEEUomOAKJgR3/uW/pHFSck9L5etysVLN4sijPXSAjpCLzlAFXaEaqiOKHtATekGv1qP1bL1Z77PWnJXN7KJfsD6+ATnRmGs=</latexit>

B : {i, j} → {i, j}

<latexit sha1_base64="yBmIsFg7BLVyQkORx9mt4l4mzMo=">AAACGHicbVDLSsNAFJ34rPUVdelmsAiCUBPxtRFqu3FZwT6gCWEynbTTTB7MTIQS8hlu/BU3LhRx251/46TNQlsvDHM4517uuceNGRXSML61peWV1bX10kZ5c2t7Z1ff22+LKOGYtHDEIt51kSCMhqQlqWSkG3OCApeRjus3cr3zRLigUfgoxzGxAzQIqUcxkopy9DPLizhizEnpyM/gXf5n0AqQHHLC0tPsFtYVp6SGk/qjzNErRtWYFlwEZgEqoKimo0+sfoSTgIQSMyREzzRiaaeIS4oZycpWIkiMsI8GpKdgiAIi7HR6WAaPFdOHyqF6oYRT9vdEigIhxoGrOnPHYl7Lyf+0XiK9GzulYZxIEuLZIi9hUEYwTwn2KSdYsrECCHOqvEI8RBxhqbIsqxDM+ZMXQfu8al5VLx8uKrV6EUcJHIIjcAJMcA1q4B40QQtg8AxewTv40F60N+1T+5q1LmnFzAH4U9rkBxR9oGw=</latexit>

∀ijkAij += BikCkj

<latexit sha1_base64="QhhHcDJjVLYDoAZmrMOb0tj8tns=">AAACGHicbVDLSsNAFJ3UV62vqEs3g0UQhJqIr41Q243LCvYBTQiT6aQdO5mEmYlQQj7Djb/ixoUibrvzb5y0XWjrgeEezrmXuff4MaNSWda3UVhaXlldK66XNja3tnfM3b2WjBKBSRNHLBIdH0nCKCdNRRUjnVgQFPqMtP1hPffbT0RIGvEHNYqJG6I+pwHFSGnJM0+dIBKIMS+lw8cM3uqqixMiNRCEpSfZDazlXgbrXqo7PLNsVawJ4CKxZ6QMZmh45tjpRTgJCVeYISm7thUrN0VCUcxIVnISSWKEh6hPuppyFBLpppPDMniklR7UG+rHFZyovydSFEo5Cn3dmW8s571c/M/rJiq4dlPK40QRjqcfBQmDKoJ5SrBHBcGKjTRBWFC9K8QDJBBWOsuSDsGeP3mRtM4q9mXl4v68XK3N4iiCA3AIjoENrkAV3IEGaAIMnsEreAcfxovxZnwaX9PWgjGb2Qd/YIx/ABR+oGw=</latexit>

∀ikjAij += BikCkj

<latexit sha1_base64="RaoKKJKnfoZ97Qo4NDpyeNTFgjA=">AAACGHicbVDLSsNAFJ34rPUVdelmsAiCUBPxtRFqu3FZwT6gCWEynbTTTB7MTIQS8hlu/BU3LhRx251/46TNQlsvDHM4517uuceNGRXSML61peWV1bX10kZ5c2t7Z1ff22+LKOGYtHDEIt51kSCMhqQlqWSkG3OCApeRjus3cr3zRLigUfgoxzGxAzQIqUcxkopy9DPLizhizEl9OsrgnZPmnxUgOeSEpafZLawrzs9gQ7WMMkevGFVjWnARmAWogKKajj6x+hFOAhJKzJAQPdOIpZ0iLilmJCtbiSAxwj4akJ6CIQqIsNPpYRk8VkwfKofqhRJO2d8TKQqEGAeu6swdi3ktJ//Teon0buyUhnEiSYhni7yEQRnBPCXYp5xgycYKIMyp8grxEHGEpcqyrEIw509eBO3zqnlVvXy4qNTqRRwlcAiOwAkwwTWogXvQBC2AwTN4Be/gQ3vR3rRP7WvWuqQVMwfgT2mTHxSAoGw=</latexit>

∀kijAij += BikCkj

Fig. 5. Sparse tensor algebra expressions classified by computation and ordering. Blue and green arrows show

the loop order and red lines show the result assembly order. Tensors’ index variables encode access order.

2.1 Index Variable Orderings

Sparse tensor algebra expressions, given in concrete index notation (CIN) [38], are composed of
tensors, index variables, and forall nodes. CIN is a loop-based intermediate representation in which
physical tensor representations are abstracted away. For the tensor abstraction, tensors are stored
level by level. Each level describes the coordinates of one tensor mode and can be materialized as a
data structure in some format. Figure 3 gives the syntax of the core parts of CIN in this paper.
Sparse tensor algebra expressions along with their tensor formats have two types of ordering

properties: access orders and loop orders. An access order describes how an individual tensor needs
to be accessed (read) and assembled (written to). The loop order, on the other hand, determines
how each tensor in an expression is actually accessed and assembled. The loop order is directly
de�ned as the order of loop index variables—index variables next to ∀ nodes in Figure 3.
The access order de�nes the order of the index variables that access the physical storage of a

tensor. It is generated by an AccessMap function that maps the index variables used to index (access)
a tensor to the storage levels of its format. The access index variables are the index variables inside
an Access in Figure 3. The �224BB"0? builds upon the established level formats such as �4=B4 and
�><?A4BB43 in Kjolstad et al. [39] and the coordinate mapping described in Chou et al. [15].

Let us consider outer-product SpGEMM �8 9 =

∑
: �8:�: 9 where � and � are stored in the

compressed sparse rows format (CSR) and � is stored in compressed sparse columns (CSC) (shown
in Figure 4). In CIN, this is expressed as ∀:8 9 �8 9 += �8:�: 9 with the following tensor AccessMaps:

(1) AccessMap
�
({8, 9 }, {�4=B4,�><?A4BB43 }) = {8, 9 },

(2) AccessMap
�
({8, : }, {�4=B4,�><?A4BB43 }) = {:, 8 }, and

(3) AccessMap
�
({:, 9 }, {�4=B4,�><?A4BB43 }) = {:, 9 }.

Therefore, the access orders for �, � and � are 8 → 9 , : → 8 , and : → 9 respectively, and the loop
order for the expression is : → 8 → 9 .

2.2 Classification

We classify sparse tensor algebra expressions based on the computation and ordering of the
result coordinates as shown in Figure 5. The computation axis describes whether each resulting

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

Compilation of Modular and General Sparse Workspaces 196:5

value corresponds to a single value computed from the operands or whether it corresponds to a
combination of many computed values (e.g., a sum). The ordering axis describes how the result
coordinates are generated, and to what extent the generation order matches the access order of the
output tensor. Intuitively, the order of input sparse iteration with respect to the order of output
access decides the number of dimensions we need in the intermediate workspace data structure.
For example, an inner-product matrix multiplication requires only a scalar (order 0) temporary,
while an outer-product matrix multiplication requires a matrix (order 2) temporary.

The result coordinate calculation is appending if the pattern of nonzeros of the result is the same
as the input iteration space and scattering otherwise. As shown in Figure 5(a), the element-wise
multiplication of a sparse and dense matrix is appending because the sparse result matrix � has
the same coordinates as the sparse input matrix �. Tensor transpositions as in Figure 5(c) are also
appending because the input coordinates do not require an intersection or union to compute the
result coordinates even though the result coordinates are transposed.
The result coordinates likely needs to be assembled in a sparse way if the result coordinate

ordering can not be narrowed to a �rst-order (vector) or zero-order (scalar) tensor as the loop
proceeds, due to the large worst-case memory cost of storing a sparse matrix or tensor in a dense
data structure. In other words, the assembly is sparse if the loop order mismatches with the output
access order at a position greater than one. As shown in Figure 5(f), the loop order of the row-wise
SpGEMM is 8 → : → 9 , and the output access order is 8 → 9 . These two orders only mismatch on
index : with : at the �rst position (from the inner-most index), so we classify the expression as
a �rst-order dense scattering (the yellow area in Figure 5). On the contrary, the loop order of the
outer-product SpGEMM in Figure 5(g) is : → 8 → 9 , which mismatches with the output access
order with : at the second position. Therefore, we classify the expression as second-order sparse
scattering (the red area in Figure 5).
In general, ordering is determined by the position of the �rst index variable in the loop order

that does not match the access order. Given a loop order L = 8" → 8"−1 ... → 81, and the output
tensor’s access order A = 9# → 9#−1... → 91, there are two important positions where the orders
mismatch. The �rst position occurs during tensor transpositions, where ?1 is the position of the
�rst index variable from the left in A that mismatches with L. The second is ?2, the position of
the �rst non-access index variable 8 in L. If 8 is before the �rst access index variable 91, then ?2 = 0

because output tensor components are accumulated scalar by scalar. If 8 is after the last access
index variable 9# , then ?2 = # because all components in the output tensor are accessed multiple
times. Otherwise, the ?2 equals the 8’s position in the middle of L between 9# and 91. The result
coordinates’ ordering equals<0G (# + 1 − ?1, ?2). The materialized workspace cannot have fewer
orders than this ordering. We provide a more detailed algorithm that determines the required order
of a workspace in Section 6.2.

2.3 Limitation of Prior Work

As shown in Table 1, prior sparse compilers [38, 39, 83, 86] cannot generate code for expressions
with sparse scattering behavior. Although compilers can generate e�cient co-iteration on sparse
input tensors [74, 87], they often assume the output compression format is known beforehand as
dense or identical to one of the compressed inputs [83, 86]. Compilers that generate code with
dense workspaces [9, 10, 38, 44, 62] can assign a temporary dense array to hold values generated
from the input co-iteration. However, they either only operate on linear algebra [10] or consume
too much memory when densifying a sparse higher-order tensor into the temporary [38]. The
TACO body of work provides format conversions [15] that can handle assignment expressions
where the result tensor has the same elements as the input but with varying formats. However, it
cannot process dynamic, out-of-order nonzeros generated by sparse iteration with scattering. As

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

196:6 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

Table 1. Output tensor support in prior work. The ✔ denotes full support and ✘ denotes no support.

Sparse Tensor Algebra Compilers

Output Appending Output Scattering

Dense Sparse Dense
Sparse

Dense workspace Sparse workspace

SparseTIR [83] ✔ ✘ ✘ ✘ ✘

Sparse Polyhedral Framework [86] ✔ ✘ ✘ ✘ ✘

MLIR Sparse Dialect [9] ✔ ✘ ✔ ✔ ✘

TACO with dense workspaces [38] ✔ ✘ ✔ ✔ ✘

TACO with format conversion [15] ✔ ✔ ✘ ✘ ✘

Our work ✔ ✔ ✔ ✔ ✔

such, our work is the �rst sparse tensor algebra compiler that takes in dynamic components from
input tensors and scatters them into tensors of any format.

3 OVERVIEW

We implemented the new compiler techniques for sparse workspaces as an extension to the open-
source tensor compiler TACO [39], but these technique can also be used in other sparse tensor
compilers [9, 52, 83]. Figure 6 gives an overview of our new compiler with sparse workspaces. It
takes as input an expression in tensor index notation (or Einsum Notation), a format language [14]
that encodes the AccessMap, and a scheduling language [65] that incorporates sparse workspaces.
Our compiler combines these three input languages into the CIN intermediate representation.
We propose the insert-sort-merge (ISM) algorithmic template for generating sparse workspace

code that can be inserted into generated sparse tensor algebra computation loop nests. The ISM
algorithm is the algorithmic backbone that gives us a straightforward way to generate modular
sparse workspace code (Section 4). Whenever a CIN expression contains a sparse workspace
tensor, our compiler lowers it into dense and sparse loops with the ISM template inserted. The
ISM template only de�nes abstract memory pools and function interfaces, with holes for di�erent
sparse workspace building blocks. During code generation, our compiler �lls in those holes with
user-de�ned workspace implementations (Section 6.3).

We explore several concrete sparse workspace policies in Section 5 that are compatible with the
ISM template. These are example user-de�ned workspace policies that materialize the ISM template
during code generation, but many more are possible. Users provide their ISM template function
implementations as input into the format language of our compiler (Section 6.1).
Our compiler technique operates across various stages of compilation and bridges prior work

on sparse iteration [30, 39] with prior work on format conversions [15] using the concepts from
the ISM template. Apart from the format language, we extend the scheduling language to include
sparse workspaces. For user productivity, we also automate the insertion of sparse workspaces to

Concrete Index
Notation (CIN)

Low-Level
Imperative IR

Insert-Sort-
Merge Calls
(Section 6.3)

Imperative Code

Sparse Workspace Policies
(Section 5)

Lowerer

Insert-Sort-
Merge

Algorithm
Template
(Section 4)

Tensor Algebra Compiler

Tensor Index Notation

User-De�ned
Template Functions

(Section 6.1)

Format Language

Sparse Workspace
Insertion

(Section 6.1)

Automatic Workspace
Reasoning
(Section 6.2)

Scheduling Language

Fig. 6. System Overview. Blue components denote new contributions of this work.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

Compilation of Modular and General Sparse Workspaces 196:7

Insert
Accumulation Array

Capacity = 2

Output components (i,j,val)

(k,i,j,Aval)
(0,2,2, 3)
(1,2,2, 8)
(1,2,3, 6)
(2,0,0, 2)
(3,2,1,20)

Compression

(2,0,0, 2)

All Array

Capacity = 4

(2,2,11) (2,3,6)
Sort

Full!

(2,2,11) (2,3,6)
Merge

Accumulation Array

+

All ArrayIteration 4:

End (after iteration 5):

Accumulation Array

All Array

(0,0,2) (2,1,20)
Sort Merge

Accumulation Array

+

All Array

Insert
(0,0,2)

Accumulation Array

(0,0,2) (2,1,20)

Deduplication
(summation over K)

0 1 1 4

0 1 2 3

2 11 620

position

coordinate

value

Compressed Result

Accumulation Array

2 2 2 3 11 6

2 2 2 3 11 6 0 2 2 2

0 1 2 3

2 20 11 6

crdi

crdj

value

Fig. 7. The insert-sort-merge algorithm template on our outer-product SpGEMM example from Figure 2.

ensure code correctness using a compiler transformation (Section 6.2). Then, we extend the lowerer
from CIN to C++ to include the ISM memory pools and function interfaces (Section 6.3).

4 ALGORITHM TEMPLATE FOR SPARSE WORKSPACES

The insert-sort-merge algorithm template (ISM) is a four-stage algorithmic backbone for con-
structing sparse workspaces. It describes the mechanism we use to insert sparse workspaces into
any sparse tensor algebra expression. The compiler emits codes that materialize the template, as
described in Section 6.
ISM accumulates the input tensor components, stores them to a temporary array, and �nally

converts the temporary array to the result’s data structure. We leave the concrete memory data
structure decisions and function de�nitions up to the user, allowing for a wide variety of concrete
sparse workspace policies as described in Section 5.

4.1 Tensor Component Abstraction

We refer to a nonzero value and its coordinates as a tensor component. The input to the ISM
algorithm is a stream of tensor components to be accumulated into the result tensor. As shown in
Figure 7, an output tensor component is composed of coordinates i and j, and the value val, which
fully describes an element in a matrix. Although tensor components are less memory e�cient per
nonzero element than other compressed representations such as CSR, they are a direct and clean
abstraction that simpli�es the algorithm template and code generation.

4.2 The Accumulation Array and All Array

ISM requires storage in which to accumulate components, deduplicate components with the same
coordinates, and compress all the generated components to the result. We achieve this by de�ning
two abstract memory pools: the accumulation array and the all array. The all array is required since
a sparse workspace must include at least one memory data structure that stores all of the input
components to assemble the output result tensor. To improve performance and manage duplicates,
the accumulation array acts as a landing pad that batches the insertions to the all array.

The all array is a temporary linear storage for the result components. Generated components are
scattered into it in sorted order, and then the result components are extracted from it to assemble
the �nal tensor format. As shown in Figure 7, the all array stores coordinates in level I and J, and
the values for each unique result tensor component. Finally, the all array is compressed to the result
data structure, for example, the CSR format in Figure 7.
We design an accumulation array to serve as an intermediate bu�er between the generated

tensor components and the all array. The accumulation array can be materialized as any e�cient
data structure on higher-order tensor components that supports random insertion. In Figure 7, the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

196:8 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

accumulation array deduplicates at (2,2) by adding the values of components (2,2,3) and (2,2,8).When
the accumulation array is full, it is merged with the all array, which we introduce in Section 4.3.

Algorithm 1 The ISM algorithm template

1: inputs: Value arrays E0;C of tensor C , Accumulation

array �22 , All array �;; .

2: output: Final output tensor$DC

3:

4: �;;>20C4 (�22)

5: while there’s still nonzero do

6: Iterate and append coordinate to 2A3B

7: if reach the last level then

8: �=B4AC (2A3B, �G?A4BB8>= ({+0;C }), �22)

9: if �22.5 D;; then

10: (>AC (�22)

11: "4A64 (�22,�;;)

12: �=B4AC (2A3B, �G?A4BB8>= ({+0;C }), �22)

13: end if

14: end if

15: end while

16: if not �22.4<?C~ then

17: (>AC (�22)

18: "4A64 (�22,�;;)

19: end if

20: �><?A4BB (�;;,$DC)

The accumulation array improves performance
since it divides and conquers the insertion of com-
ponents into the all array. We provide evidence of
this bene�t through a Big-O analysis1 and empir-
ically in Section 7.5. With the accumulation and
all arrays de�ned, we will describe how they in-
teract in the insert-sort-merge algorithm template
to create the result tensor.

4.3 Four-stage Template Model

The input tensor components—generated by the
loops that iterate over and compute on sparse and
dense tensors—are processed through the insert-
sort-merge algorithm and stored into the accu-
mulation and all arrays. Any sparse workspace
algorithm must support two types of computation:
insertions and deduplications (Figure 1). Insertions
place generated tensor components into memory
and deduplications sum inserted components that
have the same coordinates (collisions). The design
of the insert-sort-merge algorithm template, shown in Algorithm 1, distills the sparse workspace
construction process into four stages:

(1) Insertion. The insertion stage inserts tensor components into the accumulation array.
(2) Sorting. The sorting stage triggers when the accumulation array �lls up and sorts its compo-

nents into the order of the result tensor storage.
(3) Merging. The merging stage merges the components from the accumulation array into the

all array and clears the accumulation array.
(4) Compression. The compression stage transforms components stored as coordinates in the

all array to the result data format.

In the ISM algorithm, generated components are inserted into the accumulation array during the
insertion stage until the array’s capacity is reached (Algorithm 1 line 8). Tensor components with
the same coordinates are reduced (summed) either during the insertion stage or the sorting stage.
When the accumulation array is full, the ISM enters the sorting stage (Algorithm 1 line 9).

Sorting of the accumulation array and merging of the accumulation array into the all array occurs
before the accumulation array is cleared and a new tensor component is inserted. The sorting
algorithm implementation depends on the choice of accumulation array data structure. We describe
multiple concrete sorting and data structure implementations in Section 5 along with their tradeo�s.
Next, the merging stage moves components from the accumulation array into the all array, where
components remain sorted, and components with equivalent coordinates are reduced. The ISM
algorithm separates the sorting phase from the merging phase because sorting can reduce the
complexity of merging from$ (=×<) to$ (=+<) where = and< denote the number of components
in the all and accumulation arrays respectively. When the accumulation array is cleared, the ISM
algorithm enters a new iteration.

1The detailed analysis can be found in Appendix A in the auxiliary materials [84].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

Compilation of Modular and General Sparse Workspaces 196:9

1 #include "ism.h"

2 // Allocate

3 AccArray Acc(2,cap,"Coord");

4 AllArray All(2,cap);

5 Component c;

6

7 // Insert-Sort-Merge

8 for (int k = 0; k < K; k++) {

9 for (int iB = B.pos[k]; iB < B.pos[k+1]; iB++) {

10 int i = B.crd[iB];

11 c.crd[0] = i;

12 for (int jC = C.pos[k]; jC < C.pos[k+1]; jC++) {

13 int j = C.crd[jC];

14 c.crd[1] = j;

15 c.val = B.val[iB] * C.val[jC];

16 Insert(c, &Acc);

17 if (Acc.full) {

18 All.realloc(Acc.size);

19 Sort(&Acc);

20 Merge(&Acc, &All);

21 Acc.refresh();

22 Insert(c, &Acc);

23 }

24 }

25 }

26 }

27 if (Acc.size > 0) {

28 All.realloc(Acc.size);

29 Sort(&Acc);

30 Merge(&Acc, &All);

31 }

32

33 // Compress

34 A.crd = All.crd[1];

35 A.val = All.val;

36 int* A.pos = (int*)calloc(I+1, sizeof(int));

37 int iw = 0;

38 while (iw < All.size) {

39 int i = All.crd[0][iw];

40 int segend = iw + 1;

41 while (segend < All.size &&

42 All.crd[0][segend] == i) {

43 segend++;

44 }

45 A.pos[i + 1] = segend - iw;

46 iw = segend;

47 }

48 int cnt = 0;

49 for (int pA = 1; pA < I + 1; pA++) {

50 cnt += A.pos[pA];

51 A.pos[pA] = cnt;

52 }

Fig. 8. Simplified C++ code generated for outer-product SpGEMM following the ISM template. The header

file contains definitions for the accumulation array, the all array, and the ISM functions. The compression

stage transforms All from COO to the result format CSR.

Table 2. Breakdown of library workspace algorithms into the ISM template for SpGEMM �8 9 =
∑
: �8:�: 9 .

Library Insert Sort Merge

Gustavson’s [28]
1-D coordinate list and �ag list along 9 ,

Bucket sort Boolean indexing
deduplication when the �ag is true

Cusparse [18]
1-D hash table along 9 ,

Unsorted Hash table retrieval
deduplication when collision

ESC [8] 2-D coordinate list per slice of 8 Lexicographic sort
Slice concatenation
Reduce-by-key

Buluç’s2 [12] Heap with key (8, 9) per : Sorted when insert
Multiway merging
Reduce-by-key

After the last nonzero element is processed, the remaining components in the accumulation
array are sorted and merged into the all array (Algorithm 1 lines 16–18). The last step of the
insert-sort-merge algorithm template is to compress the �nal all array to the expected output tensor
format (Algorithm 1 line 20). Figure 8 shows the imperative code that materialize each part of
Algorithm 1 for outer-product SpGEMM example in Section 2.1.

4.4 Recreating Prior Work with the ISM Framework

The insert-sort-merge algorithm template provides a general and modular framework to assemble
various concrete implementations. We will show how existing workspace algorithms from prior
work are expressed in terms of the ISM template. As shown in Table 2, prevailing hand-optimized
workspace algorithms for SpGEMM can be expressed in ISM by implementing di�erent sorting
and merging algorithms. Since these algorithms do not use an accumulation array, the merge stage
column in Table 2 shows how their workspaces are compressed to the output.

2We list the core ideas of Algorithm I of Buluç’s paper, but the actual algorithm computes the multiway merging on the �y.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

196:10 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

For example, Gustavson’s algorithm uses a �ag array to label positions that already have nonzero
elements. Therefore, it can deduplicate components upon insertion by checking the �ags. Meanwhile,
the components are sorted because the position in the 1-D coordinate list is equal to the level
J index, which is based on a bucket sort [20]. The positions where the workspace �ag is set are
merged to the output; this procedure is also known as boolean indexing [16]. Other algorithms can
be analyzed similarly.

5 CONCRETE SPARSE WORKSPACE POLICIES

As demonstrated in Section 4.4, there are many di�erent concrete options for each stage of the
ISM template. A user can synthesize many di�erent concrete workspace policies (or algorithms) by
mixing di�erent data structure, sorting algorithm, and optimization implementations. This section
introduces some of these implementation decisions we made to demonstrate a few new techniques
that are compatible with our template. The concrete sparse workspace implementations introduced
in this section also give a �avor of the types of workspace optimizations possible with our approach
and allow us to evaluate our abstract template concretely in Section 7.

5.1 Data Structures

Our compiler materializes the all array in a COO data structure. We chose this data structure because
COO is convenient for transforming the physical organization of sparse tensor components [27,
51, 72], and we leverage work on code generation for format conversions between COO and other
formats from the literature [15].

The accumulation array serves as a bu�er between the input components and the all array. Sparse
iteration scatters components into the accumulation array, and then those componets are sorted
and merged with the all array. Therefore, the accumulation array data structure should support
e�cient deduplication, sorting, and sequential accesses.

Accumulation Indexing. A strategy that minimizes data movement is to store the tensor com-
ponents in an array, where the components are not moved until the accumulation array is freed.
Sorting and merging are executed on the indices of each component in the array rather than on
the component structs themselves. In this way, only integer indices are moved, reducing memory
footprint to about 1

"+1
where " denotes the mode of input components. During merging, the

sorted accumulation indices are used to access the component with the smallest coordinates in the
accumulation array. An array structure, however, is not always the best choice; other valid data
structures supported by the ISM template may not support this indexing optimization.

Reallocation. We can resize the accumulation array after it is merged in order to avoid frequent
merging with the all array. We use a three-stage piecewise linear function with heuristic thresh-
olds and slopes to determine our allocation size. This heuristic allocation policy avoids memory
overallocation when compared to a naive memory reallocation policy, like memory doubling.

5.2 Sorting Algorithms

When the accumulation array reaches its capacity, the indices are sorted based on the coordinates
of the tensor components. This computation can be modeled as the sorting of multiple arrays
where each corresponds to one level of the result tensor. Although there are various multi-array
sorting algorithms (e.g., quick sort, bucket sort, and counting sort [11, 45]), we only implement
two sorting algorithms that leverage the unique traits of the ISM sorting stage. In the ISM arrays,
each component has a unique label, represented by a �nite positive integer and a known range. For
example, for a matrix with shape (� , �), the component with coordinates (8, 9) can be labeled using

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

Compilation of Modular and General Sparse Workspaces 196:11

(8 × � + 9), and the coordinates of the �rst mode are in the range [0, �). The two sorting algorithms
may be combined with each other because they are each de�ned to sort a single tensor level.

Bucket Sort. This algorithm sorts the indices of the accumulation array (accumulation id) by a
bucket � parametrized by ! and ℎ. Each bucket holds a list of accumulation indices. ! is the length
of the bucket, and ℎ is a function that maps the coordinates within a component to an integer (the
bucket id) in range [0, !). Example mapping functions for the component with coordinates (8, 9)
of an � × � matrix include ℎ(8, 9 ; � , �) = 8 when ! = � and ℎ(8, 9 ; � , �) = (8 × � + 9)%! when ! < � .
The bucket sorting algorithm also includes a boolean �ag array that records whether an element
has been inserted. If �[bucket id] is empty, the algorithm will allocate a list at �[bucket id] and
insert the accumulation id of the inserted component. If �[bucket id] is not empty and there is
already an accumulation id in �[bucket id] whose component has the same coordinates as the one
being inserted, the values of the two components are summed. Otherwise, the accumulation id is
appended to �[bucket id].

Coordinate Sort. This algorithm appends inserted accumulation ids to a list, whose length is the
capacity of the accumulation array. Unlike the bucket sort algorithm, this sorting algorithm does
not reduce values upon insertion. When called by the ISM template, the coordinate sort applies a
1-D array sort on this list with the comparison function de�ned as the lexicographic order of each
level of coordinates. Like bucket sort, the coordinate sort returns a sorted list of accumulation ids.

5.3 Optimizations

We utilize the staging of the ISM structure to accelerate computation. The insertion stage only
writes to the accumulation array at the current time step, which is independent of the sort and
merge stages of the previous time step. Therefore, we utilize such independence by pipelining them
using multiple threads. Moreover, the all array at the next time step is independent from that of the
previous time step. Therefore, we can double bu�er the all arrays to avoid auxiliary array creation
during merging. Both optimizations are orthogonal to the data structure and sorting algorithm
decisions described previously.

Pipelining (Stage Level Parallelism). The sort and merge stages can be pipelined with the insertion
stage. When the accumulation array is full, our implementation spawns another thread to execute
the sort and merge, and the main thread continues to execute the insert for the next sparse iteration
step. In this way, the latency of the sort and merge is hidden. However, we now need to allocate
two accumulation arrays and switch them between threads when one of them reaches capacity.
Figure 9 shows this—the �rst accumulation array becomes full at C1, and the second accumulation
array is inserted into between C2 and C1 while the �rst one is being merged concurrently.

Double Bu�ering. Having two copies of the all array can avoid temporary array allocations. We
implement the merge step as an out-of-place merging of two arrays. If there is only one all array,
every merge must allocate a temporary array to hold the merged results before dumping its values
into the all array. If we double bu�er the all array, then we can eliminate this temporary array.
Figure 10 compares these two merging approaches.

In the ideal case, the execution time of any workspace policy (and the ISM template) is negligible
compared to the total kernel execution time. We provide an ablation study for various policies and
compare the empirical results with the lower bound runtime in Section 7.3.

5.4 Towards Parallel Sparse Workspaces

Although our evaluation is limited to sequential code with sparse workspaces, the insert-sort-merge
template is not tied to sequential execution. In general, ISM enables a decoupled access-compute

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

196:12 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

Insert

Sort Merge

Insert

Insert

Sort Merge

Insert Insert

Sort Merge

Sort

time

w/o Pipeline

Pipeline

Progress

Insert: 2 Sort: 2 Merge: 1

Insert: 3 Sort: 2 Merge: 2

t0 t1 t2

Fig. 9. Stage level pipelining of the sort and

merge stages with insert.

Acc

t0

All

Temp

Copy

Acc

All

Temp

Copy

Acc

All

Temp

Copy All

t1 t2 t3

Acc

All0

Acc

All1

Acc

All0
CopyCopy Copy

All1
Double Buffer

w/o Double Buffer

Memory Footprint

All

Temp Temp Temp

Acc

All1 All0

Acc

time

Fig. 10. Double bu�ering the all array, which produces a

lower memory footprint.

parallel pattern [68] where parallel producers perform sparse iteration and insert components into
the accumulation array, while parallel consumers merge the accumulation array with the all array.
With proper synchronization strategies between parallel producers and consumers, our framework
can be extended to support parallel sparse workspace. The performance challenges lie in how to
increase data locality [25], reduce atomic operations [54], and balance workloads [3]. Prior kernel-
speci�c work has proposed solutions for these challenges for hand-written kernels [19, 46, 50, 60].
The accumulation array can be tiled to better utilize speci�c architectures [56]. The all array can be
avoided by precomputing the output matrix structure in an extra symbolic phase [59]. ISM provides
an abstract analysis of these kernels and serves as a foundation for developing code generators that
can generate parallel sparse workspaces. We leave exploring the tradeo�s of parallelism-enabled
sparse workspace code as future work.

6 COMPILATION

This section describes the new compiler techniques of our system.We �rst introduce new scheduling
and format language commands such that users can manually express tensor expressions with
sparse workspaces in our compiler (Section 6.1). To increase productivity, our compiler also has the
ability to automatically detect sparse scattering behavior within expressions and then automatically
transform those expressions to include missing sparse workspaces for correctness (Section 6.2).
Once our compiler detects that a CIN expression contains a sparse workspace tensor, it automatically
generates code that inserts the insert-sort-merge algorithm template as described in Section 4.

6.1 Sparse Workspace Scheduling and Format Commands

Our compiler extends the TACO scheduling language to allow the insertion of sparse workspaces
into index notation expressions. We also extend the where statement in CIN, which precomputes
an expression into a temporary tensor variable [38], to describe parameters that con�gure the
ISM algorithm for code generation and attributes of the sparse workspace arrays. Users can either
directly use the scheduling language to insert sparse workspaces as shown in Figure 12, or rely on
our automatic sparse workspace insertion algorithm as shown in Figure 13.

Users invoke the sparse workspace transformation via the precompute scheduling command [38],
whose C++ declaration is as follows:

void IndexStmt::precompute(IndexExpr expr, vector<IndexVar> i_vars,

vector<IndexVar> o_vars, TensorVar ws);

This command transforms a CIN statement that contains a sub-expression expr to a statement
with a where sub-statement . . . = . . . wso_vars where wsi_vars = expr. We call the left-hand side of
the where statement the consumer as it consumes the workspace and the right-hand side of the
where statement the producer as it produces the workspace data. The producer is a transformed
CIN statement with the result tensor of the sub-expression expr replaced by the ws. The consumer
assigns the result tensor in the original CIN statement to a transformed expression that uses the ws.
The command also optionally replaces the index variables from the original statement i_vars on
the consumer side with the corresponding o_vars. For simplicity, we assume o_vars is equivalent

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

Compilation of Modular and General Sparse Workspaces 196:13

to i_vars for the rest of Section 6. Our compiler’s precompute command transformation di�ers in
the tensor variable (TensorVar) type for the workspace and in the construction of the consumer.
Our additions to the tensor variable format include a sparse format SpFormat class, the output

order of the workspace ow_order, and additional metadata to the TensorVar class. The SpFormat
class con�gures the materialization of the accumulation array. It annotates the speci�c sorting
algorithm by an enum in the SpFormat class (signi�ed by the Coord argument in Figure 12), which
also assigns the materialized data structure for the accumulation array. The SpFormat class also
annotates the number of orders of the accumulation array, which equals the length of the ow_order.
The ow_order assigns how the workspace’s access order is converted from the producer to the
consumer. A concrete algorithm that automatically decides the appropriate ow_order is described
in Section 6.2. The TensorVar metadata stores the dimensions of each level in the all array and the
parameters required for the chosen sorting algorithm. For example, the coordinate sort (Coord)
algorithm requires the initial capacity of the accumulation array.
These scheduling and format commands expand TACO’s scheduling space by introducing ad-

ditional scheduling options to con�gure workspaces. They thus alter the performance model of
di�erent schedules. Sparse workspaces remove key constraints on scheduled expressions by le-
galizing sparse scattering behavior. For the performance objectives, sparse workspaces add an
intermediate stage to the computation �ow, which may favor di�erent types of data locality caused
by the user-provided schedules.

6.2 Automatic Sparse Workspace Insertion

The automatic sparseworkspace insertion transformation decideswhether or not a sparseworkspace
should be inserted and, if so, which sparse workspace con�gurations to use. Users can apply sched-
ules like split, pos, and reorder to a CIN expression as if no sparse scattering behavior exists in
the expression. Then, the compiler automatically detects whether sparse scattering occurs and, if
necessary, inserts a workspace into the CIN.
The algorithm deduces the loop order input_order from the CIN expression and compares it

with the access order of the result tensor variable output_order. If these two orders are the same,
then the expression is concordant [1]. Otherwise, it is discordant. If every level of the result tensor
supports random insertion and lookups (i.e., it behaves as a dense level format), then we do not
insert any workspaces. Even if the expression is discordant, the order mismatch may not require a
workspace because it only involves linear transformations on the access order, like 8× � + 9 → 9×� +8 ,
which is expressible using dense formats. Otherwise, if the expression is discordant, we assign the
dimension of each level of the SpFormat to be the same as the output, and ow_order is calculated
to satisfy the following constraint input_order[i] == output_order[ow_order[i]]. If the
expression is concordant, we check the mode formats of all tensors. If the result format has di�erent
storage levels than the iteration levels, we insert a sparse workspace and transform the consumer-
side assignment to the format conversion IR of Chou et al. [15]. If the result tensor format’s storage
levels are the same as its iteration levels, we can either insert a workspace with the same levels
and dimensions as the result or use the common iteration hoisting optimization (see Section 6.2) to
allocate a lower-order sparse workspace.

Input Order Reconstruction. First, the transformation must deduce the loop order using the
original (unscheduled) index variables. The key step in this deduction is to reconstruct the original
loop order from the expression by remapping transformed index variables back to their original
indices. This retrieval may be complex since the expression may already be composed of other
schedules that transform and change the loop index variables without modifying the access index
variables [65]. The transformation collects the input-loop index variables input_order from the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

196:14 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

1 A: ({Compressed,Compressed}, {j,i})→{j,i};

2 B: ({Dense,Compressed}, {i,k})→{i,k};

3 C: ({Dense,Compressed},{k,j})→{k,j};

4 stmt: A(j,i) = B(i,k) * C(k,j);

5 stmt = stmt.reorder({i,k,j})

6 .fuse(i,k,f)

7 .pos(f,fpos,B(i,k))

8 .split(fpos,{f0,f1},4)

9 .reorder({f0,f1,j});

Fig. 11. Example input schedule to the

Automatic Sparse Workspace Insertion:

∀50 51 9� 98 += �8:�: 9 s.t. 5 DB4 (8, :, 5) and

?>B (5 , 5?>B , �8:) and B?;8C (5?>B , {50, 51}, 4)

10 W: Tensor(SpFormat(2, Coord), {I,J}, {1,0}, cap);

11 stmt = stmt.precompute(B(i,k)*C(k,j), {i,j}, {i,j}, W);

Fig. 12. The code required to manually insert a

workspace for the example in Figure 11. The updated

CIN now contains a where node: ∀98� 98 =,98 where

∀50 51 9,8 9 += �8:�: 9 . . .

10 stmt = insertSparseWorkspace(stmt, Coord, cap);

Fig. 13. The automatic sparse workspace insertion

command is equivalent to Figure 12.

composition of ∀s in the input expression. Then, our compiler has three rules to retrieve the access
index variables from the loop index variables for fuse, pos, and split, respectively. These rules
are applied in the inverse order of the scheduling relations in the expression. Our compiler targets
the following three scheduling commands [65]:

• split. split(IndexVar i, IndexVar i0, IndexVar i1, size_t s) splits an index variable
i into two nested index variables (i0 and i1) with the iteration step s.

• fuse. fuse(IndexVar i, IndexVar j, IndexVar f) fuses two nested index variables (i
and j) to an index variable f.

• pos. pos(IndexVar i, IndexVar p, Access A) replaces the coordinate space index i

with a transformed index variable p that iterates through the position space of input access A
over the same iteration range.

If a split relation occurs, the transformation detects the locations of the split index variables,
i0 and i1, in the loop order and determines which is the inner index and which is the outer index
position. Then, if i is a reduction variable, the transformation replaces the outer split index variable
with i and deletes the inner split index variable. Otherwise, it replaces the inner one with i and
deletes the outer. This distinction is designed for optimizing common non-reduction iterations. The
split transformation does not change the start position of the reduction so the outermost index
(between i0 and i1) decides the insertion position for i. If a pos relation occurs, the transformation
replaces the index variable p with i since pos does not change the access order. If a fuse relation
occurs, the transformation replaces the index variable fwith i and j since i and jwere consecutive
in loop order when they were fused.
For example, consider an SpGEMM followed by a matrix transposition � 98 =

∑
: �8:�: 9 . We

assume the user imposes the following schedules on the expression, as shown in Figure 11. The initial
value of input_order equals {5 0, 5 1, 9}. Based on the above rules, we construct the input_order
as {50, 51, 9} ⇒ {5?>B , 9} ⇒ {5 , 9} ⇒ {8, :, 9}.

Input-output Comparison. This step of the transformation compares the input loop order with the
access index variables of the result tensor. First, the transformation identi�es the access order of the
result tensor output_order. Then, the transformation eliminates any variables in the input_order
that are not used in the result access. The size of the �nal input_order set determines the number
of workspace levels and the �nal input_order can now be used to compare with output_order

to deduce the correct ow_order.
For the SpGEMM example, the result tensor access � 98 de�nes output_order as { 9, 8}. The

order does not contain a : index so : is a reduction variable. This step eliminates : from the
input_order = {8, :, 9} to produce the �nal input_order = {8, 9}. The sparse workspace must
have two levels with dimensions {� , � }, which are assembled in the input_order {8, 9} and accessed

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

Compilation of Modular and General Sparse Workspaces 196:15

in the output_order { 9, 8}. The ow_ordermust be [1, 0] to satisfy the constraints input_order[0]
== output_order[1] and input_order[1] == output_order[0]. The �nal generated workspace
, for this example is shown in Figure 12 on line 10.

Common Iteration Hoisting. If part of the input_order and output_order match, common
iteration variables can be hoisted out of the where statement to become nested foralls that serve as
shared outer loops for both the consumer and producer. The conditions for this optimization are:

(1) The output tensor format has the same storage levels as the iteration levels.
(2) The index variables are the same in both orders until one position ? > 0 where the index

variables mismatch. All index variables after position ? are ignored.
(3) For all the index variables that match before position ? , the corresponding modes in the

output tensor have stronger abilities than the input tensors.

We measure a tensor’s ability using the same method as Ahrens et al. [1]. A tensor’s ability is the
combination of the abilities of its level formats. Intuitively, a format’s ability measures the time
complexity of inserting and accessing the format. If the result format can be assembled using the
access pattern generated by the input tensors, we de�ne the result format as stronger than the input.
In other words, if the result format is stronger than the input, the result can be directly assembled
without the help of a workspace. For example, a dense output is stronger than a compressed input
because the dense format supports inserts whereas the compressed format needs to be iterated by
position and writes to the result via insertion.

DenseWorkspace Optimization. This optimization is an extreme case of common iteration hoisting,
but we de�ne it as a separate case since it allows our compiler to support dense workspaces. If an
expression is concordant, it may be identi�ed as having dense scattering behavior, which can be
solved by a dense workspace. Dense workspaces may perform better than sparse workspaces in
this scenario because the sparse workspace has to store extra index arrays that are not needed by
the dense workspace. The conditions for this optimization are:

(1) There is a reduction variable in the input_order retrieved from the schedules. In our
SpGEMM example, {8, :, 9} contains the reduction variable : .

(2) There is only one variable in the input_order after the reduction variable. Our outer-product
SpGEMM example does not satisfy this constraint.

If these requirements are met, our transformation uses the dense workspace transformation of Kjol-
stad et al. [38]. We analyze the performance of the dense workspace optimization in Section 7.2.

6.3 Code Generation

After the sparse workspace con�gurations are set by the scheduling language, our compiler lowers
CIN to a C-like imperative IR before �nally generating C++ code. The C-like imperative IR models
platform-agnostic basic blocks such as variable declarations, loops, conditional statements, and
function calls. Our imperative IR introduces a new mechanism for the accumulation and all arrays
and generates ISM as function calls to external functions. During code generation, our compiler
integrates ISM function calls and variables into the generated code, which materializes the speci�c
ISM policy assigned by the user in the scheduling language.
Our code generation algorithm for sparse workspaces occurs whenever the compiler detects

a where statement with a SpFormat tensor variable. The sparse workspace tensor variable is
accessed in two di�erent ways on the producer and consumer sides, while an ordinary tensor is
only accessible in one way. Our compiler uses the same sparse iteration generation mechanism as
TACO, transforming tensor access index variables into per-level iterators [39]. The level format of
the input tensors determines the attributes and capabilities of the loop iterator. The workspace

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

196:16 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

has the same access attributes as a dense level: random insertion and lookups. Therefore, when
generating producer-side co-iteration code, our code generator treats the sparse workspace as a
dense tensor and replaces the assignment statement with the ISM functions. The rest of the code
generation algorithm follows from the TACO body of work [15, 65]. Our compiler modi�es code
generation in the following steps:

(1) Our compiler inserts the proper data structure allocations when an SpFormat is detected in
the CIN expression. See lines 4–6 in Figure 8 for an example of the generated code.

(2) To force concordance, our compiler tracks the tensor component’s coordinates and reorders
them based on the ow_order. This behavior generates a variable assignment expression in
the body of any forall loop that has an index variable participating in the output_order of
the result tensor. See lines 12 and 15 in Figure 8.

(3) When our compiler detects a where statement with an associated SpFormat workspace tensor,
the mechanism forces any loop index variable iterators that are also in the sparse workspace
producer access to have dense capabilities.

(4) Then, our compiler detects the sparse workspace assignment on the producer-side of the
where statement and inserts the ISM function calls. See lines 17–23 in Figure 8.

(5) Our compiler emits the cleanup ISM function calls between the producer and consumer sides
of the detected where statement. See lines 28–32 in Figure 8.

(6) Finally, our compiler lowers the consumer side, which emits the compression function. When
generating the compression function, the relevant consumer-side access iterators are created
using (higher-order) COO format capabilities. See lines 34–53 in Figure 8.

The code generation algorithm allows our compiler to �ll in the code holes produced by the
ISM template using user-de�ned functions. We purposefully separate the code generation of
the ISM function template from the IR for modularity. Our template design allows for di�erent
optimizations and policies, and we anticipate that users will want to introduce other hand-optimized
implementations in the future. Our system is robust to such changes and su�ciently modular to
isolate the optimizations to the ISM function de�nitions. However, the ISM template is encoded
directly into the IR transformations of our system since we have shown the generality of the ISM
template structure in expressing various policies.

7 EVALUATION

We evaluate our sparse workspace technique by comparing the performance of linear and tensor
algebra kernels against state-of-the-art systems. We also perform ablation studies on di�erent
sparse workspace policies to describe the optimization space of our design.

7.1 Methodology

All experiments are run on a dual-socket 2.4 GHz Intel Xeon E5-2640v4 machine with 40 cores (80
threads) and 50 MB of L3 cache per socket, running Ubuntu 20.04 LTS. The machine has 256 GB of
memory and runs kernel version 5.4.0-155-generic and GCC 9.4.0. We compare our work against
TACO at commit 2b8ece4 [38], Eigen version 3.4.0 [26], and Cyclops Tensor Framework (CTF) at
commit e52330f [67]. We implement our compiler in C++ as an extension to the TACO compiler.
All experiments are run with 5 warmup rounds and report the arithmetic mean execution time of
20 benchmark rounds. As in prior work [31], all SpGEMM kernels are run with the compressed
(sparse) matrix operand � and the second operand is that same matrix transposed �) with the
columns shifted by one. We report all runtimes and memory usage in log-scale.
Figure 14, Figure 17, and Figure 18 were run on real-world data from the SuiteSparse matrix

collection [42]. To select a representative and diverse set of matrices, we randomly sampled 20

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

Compilation of Modular and General Sparse Workspaces 196:17

10
-5

10
-3

10
-1

10
1

300 3000 30000 300000 3000000

R
u

n
ti
m

e
 (

s
)

nonzeros

Eigen Dense Workspace

Fig. 14. TACO with dense workspace vs. Eigen on row-wise SpGEMM for selected SuiteSparse matrices.

matrices from each category based on the number of rows: less than 12000, 12000 to 180000, and
larger than 180000. Tensors in this section that only have their density or mode de�ned are sparse
based on a uniform random distribution.
In this section, a sparse workspace with a “Bucket” policy denotes a bucket sort with ! = �

and ℎ(8, 9) = 8 , a “Hash” policy denotes a bucket sort with ! < � and ℎ(8, 9) = (8 ∗ � + 9)%!, and a
“Coord” policy denotes the coordinate sort. For the “Hash” and “Coord”, we heuristically assign !

as 2⌈;>62==I ⌉ , where ==I is the number of nonzeros of the input matrix.

7.2 First-order Sparse Workspaces in Linear Algebra

Our compiler can generate dense workspace code competitive with a hand-optimized library for
�rst-order (vector) workspaces as expected. In this case, our sparse workspaces are e�ciently
implemented using the dense workspace technique from prior compilation systems. Speci�cally,
in Figure 14, we compare against Eigen, a state-of-the-art linear algebra library, for the row-wise
SpGEMM with all matrices stored in CSR format.
Though the generated dense workspace kernel outperforms the Eigen library, there exist cases

where �rst-order sparse workspaces, such as those generated by our compiler, outperform both
Eigen and dense workspaces.We evaluate the sparse workspace using the same SpGEMM expression
with CSR matrices but on synthetic data. In these experiments, we pick the Bucket sparse workspace
policy for all linear algebra expressions. The input matrix � is generated with 10% nonzero elements
along level K, and the dimension of level K is swept from 2500 to 40000 with increments generated
on a logarithmic base 2 scale. Each column has 1000 nonzeros, and we keep the number of dense
elements as 10000 × 10000. Our synthetic data lets us indirectly control the number of collisions
that occur during accumulation, as the dimension of level K increases the amount of coordinate
deduplication also increases. As shown in Figure 15, the sparse workspace is better than the dense
when there is less deduplication. Moreover, �rst-order dense workspacememory grows proportional
to the dimensions of one level. When the amount of deduplication is small, the sparse workspace
still consumes less memory because the output tensor components are sparse. However, as the
deduplication increases, the dense workspace improves due to better locality.

7.3 Second-order Sparse Workspaces in Linear Algebra

Sparse workspaces use less memory than dense workspaces, which is important when a temporary
tensor is very sparse, as a dense workspace may not �t in memory. Moreover, sparse workspaces
may improve performance over dense workspaces, due to increased memory locality.
We show the performance and memory bene�ts of sparse workspaces over the dense baseline

on second-order scattering in the outer-product SpGEMM expression. For the compiler-generated
algorithms, the input matrices are stored in doubly-compressed sparse row and column (DCSR and
DCSC) formats [12] since it compresss out the columns without deduplication. For Eigen, the input

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

196:18 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

10
-2

10
-1

10
0

10
1

10
2

10
3

40 80 120 160 200

R
u

n
ti
m

e
 (

m
s
)

nonzeros at level K

10
-1

10
0

10
1

10
2

10
3

2500 5000 10000 20000 40000

R
u

n
ti
m

e
 (

m
s
)

Dimension of level K

Sparse Workspace Dense Workspace Eigen

Fig. 15. Comparison of sparse and dense workspaces

on row-wise SpGEMM for synthesized matrices.

Fig. 16. Comparison of sparse and dense workspaces

on outer-product SpGEMM for synthesizedmatrices.

10
-5

10
-3

10
-1

10
1

10
3

100 1000 10000 100000 1000000

R
u

n
ti
m

e
 (

s
)

Matrix Dimension Size

Sparse Workspace Dense Workspace Eigen Lower Bound

46994

Fig. 17. Comparison among the best results of di�erent sorting algorithms with the dense workspace on

second-order sca�ering. We construct the lower bound as described in Section 5.

matrices are stored in CSR since it does not support DCSR. The result matrix is stored in CSR so
both methods need to compress the workspace to the output format.

The trend in Figure 16 is similar to that of Figure 15. Again, the sparse workspace is better when
there is less deduplication, but the second-order workspace has greater overall speedup since higher
orders have a larger opportunity for savings. Unlike Figure 15, we keep the dimensions of I and K
as 10000 and 10000, respectively, for Figure 16 and sweep the number of nonzeros at level K. We
still keep 1000 elements in each column with nonzeros in matrix �.

As shown in Figure 17, the performance of sparse workspaces remains competitive even where a
dense workspace �ts in memory. Also, the sparse workspace only incurs overhead proportional to
the number of sparse iterations because the sparse workspace scales at the same rate as the runtime
lower bound. Following the de�nition of the runtime lower-bound in Section 5.3, we record the
ideal execution time by only keeping the sparse iteration computation and eliminating all the code
related to the workspace.

A sparse workspace is necessary for sparse scattering when a dense workspace is too large to �t
in memory. As shown in Figure 18, the sparse workspace also saves on average 3.6× the amount of
memory for the matrices that do not OOM. We estimate the memory footprint as shape× (3× 4+ 1)

bytes for the dense workspace and nnz × 3 × 4 bytes for the sparse workspace, where shape is the
number of dense elements, and nnz is the number of nonzeros. We con�rm this trend in Figure 18,
which demonstrates that the dense workspace runs out of memory when the input matrices get
too large (after the black line), while the sparse workspace scales.

7.4 Sparse Workspaces in Tensor Algebra

Sparse workspaces are especially important for higher-order tensor algebra expressions, as they
tend to need higher-dimensional temporaries. We demonstrate this e�ect for SpMTTKRP ∀:;8 9�8 9 =

�:;8�: 9�; 9 , SpTTM ∀:8 9;�8 9; = �:8 9�:; and SpTTM-I ∀:8 9;�: 9; = �:8 9�8; , which are used to factorize

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

Compilation of Modular and General Sparse Workspaces 196:19

10
-2

10
0

10
2

10
4

10
6

100 1000 10000 100000 1000000M
e

m
o

ry
 f
o

o
tp

ri
n

t
(M

B
) Sparse Workspace Dense Workspace

Matrix Dimension Size

46994

Fig. 18. The memory footprint of sparse vs. dense workspaces on second-order sca�ering.

10
0

10
2

10
4

10
6

4 8 16 32 64 128

R
u

n
ti
m

e
 (

m
s
)

Matrix Dimension Size Matrix Dimension Size

4 16 64 256 1024
Matrix Dimension Size

4 16 64 256 1024
Matrix Dimension Size

CTFSparse Workspace

4 8 16 32 64 128

(a) SpMTTKRP on nell-2. (b) SpTTM on nell-2. (c) SpMTTKRP on uber3. (d) SpTTM on uber3.

Fig. 19. SpMTTKRP and SpTTM runtime on nell-2 and uber3.

tensors [47, 69]. We test these expressions on the nell-2, uber3, and nips33 from the FROSTT
dataset [70], and the Facebook tensor [76] that �t in our memory.
As shown in Figure 19, we compare the generated Hash sparse workspace to CTF, a state-of-

the-art sparse tensor algebra library [67]. We sweep the dimensions of the free level of the matrix
(J for SpMTTKRP and L for SpTTM) and keep the density of the input matrices as 10%. For both
systems, we store input higher-order tensors in the compressed sparse �ber (CSF) [71] format and
output tensors as COO. The input matrices to CTF are stored in COO since that is the only format
it supports for matrices. CTF reduces higher-order tensor contractions to matrix multiplications
through index folding, which costs time and memory. Therefore, CTF runs out of memory in
Figure 19b and Figure 19a. Also, CTF computes some metadata of the tensors for optimization
before computation. Such overhead is apparent when the matrix is small. When the matrix grows
larger, the bene�ts from the metadata outweigh the latency of the preprocessing. Therefore, in
Figure 19c and Figure 19d the runtime of the sparse workspace grows faster than CTF as the
matrix dimension increases. We also evaluate SpMTTKRP on the freebase_sampled tensor from
Freebase [33] with J = 4. CTF OOMs in this case, while our method takes around 16 hours to �nish.

To show that the performance of sparse workspaces is agnostic to the shape of the input tensors,
we do experiments in Figure 20. Unlike Figure 19, we keep the input non-zero elements unchanged
and sweep the dimensions of the free level of the matrix. The other experimental settings are the
same as Figure 19. As expected, the runtime of the sparse workspace does not increase as the matrix
dimension size becomes larger since the sparse iteration and ISM behaviors do not change. On
the contrary, the runtime of CTF increases because it uses dense sub-tensors to support its index
folding, whose cost grows with the size of the matrix.

7.5 Study of Sparse Workspace Design Choices

We perform an ablation study to analyze the di�erent optimizations and concrete policies of our
sparse workspace generation framework. We �rst empirically justify the two-level accumulation

3We modify the FROSTT uber and nips 4-tensors to 3-tensors by dropping one dimension as in Hellsten et al. [29].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

196:20 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

10
0

10
1

10
2

10
3

10
4

10
5

4 8 16 32 64 128 4 8 16 32 64 1284 8 16 32 64 128 4 8 16 32 64 128

Matrix Dimension Size Matrix Dimension SizeMatrix Dimension Size Matrix Dimension Size

R
u

n
ti
m

e
 (

m
s
)

(a) SpMTTKRP on fb. (b) SpTTM-I on fb. (c) SpMTTKRP on nips3. (d) SpTTM-I on nips3.

Fig. 20. SpMTTKRP and SpTTM-I runtime on Facebook (fb) and nips3.

10
-5

10
-3

10
-1

10
1

10
3

300 2400 19200 153600 1228800 9830400

R
u

n
ti
m

e
 (

s
)

nonzeros

Sparse Workspace Map Vector

Fig. 21. Empirical benefits of the accumulation and all array structure in our ISM template. We compare

our bucket policy against a map and vector data structure policy. The map implicitly sorts every insert

(accumulation size = 1), whereas the vector only sorts once before compressing the output (accumulation size

= sizeof(output)), which are the two extremes of our ISM template.

and all arrays, instead of only using one array as in prior work policies [44, 66]. We then investigate
the in�uence of the concrete policies introduced in Section 5.
In Section 4.2, we analyzed the bene�t of using a two-level array structure via Big-O analysis.

However, since Big-O can be misleading in practice, we compare our optimized methods with
some straightforward sparse workspace policies that only use one storage array. Our two-array
workspace policies have two extremes. One extreme sorts and deduplicates every time an output
component is inserted, which occurs when using a single map as a sparse workspace [66]. The other
extreme is to sort and deduplicate after all output components are generated, which occurs when
inserting components into a single vector with one sorting and deduplication pass at the end before
compression. In both of these extremes, only a single data structure is necessary. Our proposed
method lies in the middle because we sort and deduplicate in batches using the accumulation array
and merge the components with the all array every time the accumulation array is full. Though the
two extremes do not need a merging stage, all three methods require a compression stage. Figure 21
shows that these two extremes—the map and the vector—are slower than our bucket policy in most
cases. Therefore, it is empirically bene�cial to use our ISM algorithm template with two arrays.
In Section 5.2 and Section 5.3, we introduced two concrete sorting algorithms and two opti-

mizations for sparse workspaces that �t within our ISM framework. Figure 22, Figure 23, and
Figure 24 show that no single sorting algorithm or optimization can dominate all inputs. As shown
in Table 3, this observation still holds for higher-order tensors. In Table 3, we sweep the dimensions
of the free level J for SpMTTKRP and keep the density of the input matrices as 1%4. Since the
performance of sparse computation is data-dependent, the compiler should support many concrete
sparse workspace policies to maintain performance across the range of sparse data.

4Other results can be found in Appendix B, and they share similar trends. The full lists of matrix and tensor data we use can

be found in Appendix C and D in the auxiliary materials [84].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

Compilation of Modular and General Sparse Workspaces 196:21

Table 3. SpMTTKRP runtime (ms) of sorting algorithms on nips3. We underscore the best policy for each J.

Method J=4 J=8 J=16 J=32 J=64 J=128 J=256 J=512 J=1024 J=2048

Bucket 0.4390 1.037 3.022 7.904 27.41 72.40 165.3 322.1 664.6 1331
Hash 0.5954 1.204 3.139 7.576 26.08 64.65 152.3 317.9 673.5 1410
Coord 0.3422 0.9175 2.883 7.687 27.18 71.5 163.0 336.7 706.7 1388

1E+01

1E+03

1E+05

1E+07

1E+09

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

Bucket Hash Coord

R
u

n
ti
m

e
 (

u
s
)

Matrices from SuiteSparse sorted by # nonzeros

Fig. 22. Runtime comparison among di�erent sorting algorithms.

0

3

6

9

12

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

Bucket Hash Coord

Matrices from SuiteSparse sorted by # nonzeros

P
e

rf
o

rm
a

n
c
e

(M
F

L
O

P
S

)

12.25

Fig. 23. Performance comparison among di�erent sorting algorithms reported in a linear scale. FLOPS is

calculated as the number of fused multiply-add (fma) operations divided by the runtime.

0.4

0.8

1.2

1.6

2

3x10
2

3x10
4

3x10
6

S
p

e
e

d
u

p

nonzeros

DoubleBuffer Pipeline DoubleBuffer+Pipeline Original

3x10
2

3x10
4

3x10
6

nonzeros

3x10
2

3x10
4

3x10
6

nonzeros

(a) Double Bu�er. (b) Pipeline. (c) Double Bu�er + Pipeline.

Fig. 24. Bucket sort using two optimizations proposed in Section 5.3. Speedups are reported in a linear scale.

8 RELATED WORK

We introduce four areas of related work. The �rst area, code composition in compilers, describes
our work in terms of general compilation strategies from prior work. Then, we focus speci�cally
on works related to workspaces and sparse systems, namely workspace optimizations in sparse
kernels, workspace optimizations in sparse compilers, and sparse tensor format abstraction.

Code Composition in Compilers. Code composition enables themodular reuse of high-performance
codelets (or stencils) without modifying the compiler cross-layer. Exocompilation [32] provides
a framework that replaces computation procedures with hardware primitive functions. Mosaic
and TVM [7, 13] integrate vendor library functions into their DSL lowering process. Template
JITs [21, 22, 61, 80] apply a similar methodology to general compilation. However, they integrate
pre-de�ned bytecodes or AST nodes instead of library functions. Our method is most similar to
Hyper [55], FFTW [23], and the ideas in [73] in that the compiler composes user-de�ned algorithmic
templates with the rest of the generate code.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

196:22 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

Workspace Optimizations in Sparse Kernels. Prior work on individual tensor algebra kernels has
used workspaces for both dense and sparse scattering. The dense workspace was �rst used to
implement the multiple-switch algorithm in SpGEMM [28]. Other work either generalizes the
dense workspace to more expressions [6, 24] and/or to hardware architectures [17, 53]. A sparse
workspace was �rst proposed in [12] to scale SpGEMM to thousands of processors. Subsequent work
also generalizes sparse workspaces to more expressions [2, 57] and various architectures [8, 58, 82].
Current sparse library frameworks also leverage workspaces. Eigen [26] uses optimized Gus-

tavson’s dense workspace by converting the input matrices to be compatible with row-wise
SpGEMM. CTF [67] reduces tensor contractions to matrix multiplications and transpositions
where each sub-tensor result works as a workspace that is reduced in the end.

Unlike these prior workspace algorithms and library frameworks, our compiler approach is
general for any tensor algebra expression and modular across various workspace designs. The
design of our compiler allows for optimization techniques and core data structure strategies while
abstracting away architecture-speci�city.

Workspace Optimizations in Sparse Compilers. This paper integrates the sparse workspace algo-
rithm into an existing sparse compilation framework, enabling it to generate code for arbitrary
tensor algebra expressions that have sparse scattering. Early work on sparse compilers only had
�rst-order and second-order dense workspaces for linear algebra. Bik and Wijsho� [10] materialize
the internal sparse collection as a dense workspace in their restructuring compiler for row-wise and
outer-product SpGEMM. In SIPR [62], a dense workspace is implemented for row-wise SpGEMM
as a C++ class with access and update methods. Recent work on sparse compilers generalize dense
workspaces to tensor algebra [9, 38, 44] using schedules [13, 38, 63, 65]. Workspaces are indispens-
able for the scattering problem, therefore, sparse compilers without workspaces can only support
appending expressions [83, 86, 87].

Sparse Tensor Format Abstraction. The sparse workspace techniques in this work bridge the
gap between prior techniques on sparse iteration and tensor format conversions to solve the
sparse scattering problem. Without format conversions, the sparse workspace would be unable
to generate the result tensor format assigned by the user. Researchers have been studying sparse
tensor formats and e�cient format conversion algorithms for decades in order to utilize the data
distribution for optimizing speci�c expressions [12, 28, 35, 64, 77, 78]. Early sparse compilers have
their own individual format systems [5, 43, 75], but recent work on compilers generalize these
approaches by creating a uniform representation and conversion routine for common compressed
formats [14, 15, 51]. The sparse workspace tensor format described in our work (SpFormat) for ISM
arrays is de�ned using the same level format abstraction presented by Chou et al. [14], and the
code generation for the compression stage of our compiler leverages work from Chou et al. [15].

9 CONCLUSION

We introduce a compiler for sparse tensor algebra that can generate code for expressions with sparse
scattering behavior through the introduction of sparse workspaces. Users may either manually
insert sparse workspaces using our compiler or rely on the compiler to automatically detect sparse
scattering and insert these workspaces. The compiler leverages a four-stage algorithm template,
called insert-sort-merge, to abstractly represent a sparse workspace, and we provide data structures
and optimizations that implement concrete sparse workspace policies using this algorithm template.
Our work extends the generality of prior compilers for sparse tensor algebra by treating sparse
tensors as a �rst-class concept for any tensor variable, including temporaries.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

Compilation of Modular and General Sparse Workspaces 196:23

ACKNOWLEDGMENTS

We thank Alexander J. Root, Benjamin Driscoll, Bobby Yan, Chris Gyurgyik, David Broman, Guohao
Dai, Kai Zhong, James Dong, Praneeth Kolichala, Rubens Lacouture, Scott Kovach, Shiv Sundram,
Shulin Zeng, Rohan Yadav, Yu Wang and Zhenhua Zhu for their helpful feedback. This work was
supported in part by the Semiconductor Research Corporation (SRC) PRISM center. Olivia Hsu was
supported by anNSFGRFP Fellowship. Any opinions, �ndings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily re�ect the views of the
aforementioned funding agencies.

REFERENCES

[1] Peter Ahrens, Fredrik Kjolstad, and Saman Amarasinghe. 2022. Autoscheduling for Sparse Tensor Algebra with an

Asymptotic Cost Model. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language

Design and Implementation (San Diego, CA, USA) (PLDI 2022). 269–285.

[2] Kadir Akbudak and Cevdet Aykanat. 2014. Simultaneous input and output matrix partitioning for outer-product–

parallel sparse matrix-matrix multiplication. SIAM Journal on Scienti�c Computing 36, 5 (2014), C568–C590.

[3] Pham Nguyen Quang Anh, Rui Fan, and Yonggang Wen. 2016. Balanced hashing and e�cient GPU sparse general

matrix-matrix multiplication. In Proceedings of the 2016 International Conference on Supercomputing. 1–12.

[4] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin Bao, Peter Bell,

David Berard, Evgeni Burovski, et al. 2024. PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode

Transformation and Graph Compilation. (2024).

[5] Gilad Arnold, Johannes Hölzl, Ali Sinan Köksal, Rastislav Bodík, and Mooly Sagiv. 2010. Specifying and verifying

sparse matrix codes. ACM Sigplan Notices 45, 9 (2010), 249–260.

[6] Ariful Azad and Aydin Buluç. 2017. A work-e�cient parallel sparse matrix-sparse vector multiplication algorithm. In

2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 688–697.

[7] Manya Bansal, Olivia Hsu, Kunle Olukotun, and Fredrik Kjolstad. 2023. Mosaic: An Interoperable Compiler for Tensor

Algebra. Proceedings of the ACM on Programming Languages 7, PLDI (2023), 394–419.

[8] Nathan Bell, Steven Dalton, and Luke N. Olson. 2012. Exposing Fine-Grained Parallelism in Algebraic Multigrid

Methods. SIAM Journal on Scienti�c Computing 34, 4 (2012), C123–C152.

[9] Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasilache, Bixia Zheng, and Fredrik Kjolstad. 2022.

Compiler Support for Sparse Tensor Computations in MLIR. ACM Trans. Archit. Code Optim. 19, 4, Article 50 (sep

2022), 25 pages. https://doi.org/10.1145/3544559

[10] Aart JC Bik and Harry AG Wijsho�. 1994. On automatic data structure selection and code generation for sparse

computations. In Languages and Compilers for Parallel Computing: 6th International Workshop Portland, Oregon, USA,

August 12–14, 1993 Proceedings 6. Springer, 57–75.

[11] Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plaxton, Stephen J. Smith, and Marco Zagha. 1991.

A Comparison of Sorting Algorithms for the Connection Machine CM-2. In Proceedings of the Third Annual ACM

Symposium on Parallel Algorithms and Architectures (Hilton Head, South Carolina, USA) (SPAA ’91). 3–16.

[12] Aydin Buluc and John R. Gilbert. 2008. On the representation and multiplication of hypersparse matrices. In 2008 IEEE

International Symposium on Parallel and Distributed Processing. 1–11. https://doi.org/10.1109/IPDPS.2008.4536313

[13] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,

Yuwei Hu, Luis Ceze, et al. 2018. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). 578–594.

[14] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format abstraction for sparse tensor algebra compilers.

Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1–30.

[15] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2020. Automatic Generation of E�cient Sparse Tensor

Format Conversion Routines. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design

and Implementation (London, UK) (PLDI 2020). 823–838.

[16] Donald B Cleveland, Ana D Cleveland, and Olga B Wise. 1984. Less than full-text indexing using a non-boolean

searching model. Journal of the American Society for Information Science 35, 1 (1984), 19–28.

[17] Steven Dalton, Luke Olson, and Nathan Bell. 2015. Optimizing sparse matrix—matrix multiplication for the GPU. ACM

Transactions on Mathematical Software (TOMS) 41, 4 (2015), 1–20.

[18] Julien Demouth. 2012. Sparse matrix-matrix multiplication on the GPU. In Proceedings of the GPU technology conference,

Vol. 3.

[19] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam. 2017. Performance-portable sparse matrix-matrix

multiplication for many-core architectures. In 2017 IEEE International Parallel and Distributed Processing Symposium

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

https://doi.org/10.1145/3544559
https://doi.org/10.1109/IPDPS.2008.4536313

196:24 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

Workshops (IPDPSW). IEEE, 693–702.

[20] Luc Devroye. 1986. Lecture notes on bucket algorithms. Progress in computer science 6 (1986).

[21] Dawson R. Engler. 1996. VCODE: a retargetable, extensible, very fast dynamic code generation system. In Proceedings of

the ACM SIGPLAN 1996 Conference on Programming Language Design and Implementation (Philadelphia, Pennsylvania,

USA) (PLDI ’96). 160–170.

[22] M.A. Ertl and D. Gregg. 2004. Retargeting JIT compilers by using C-compiler generated executable code. In Proceedings.

13th International Conference on Parallel Architecture and Compilation Techniques, 2004. PACT 2004. 41–50.

[23] Matteo Frigo and Steven G Johnson. 1998. FFTW: An adaptive software architecture for the FFT. In Proceedings of the

1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Vol. 3.

IEEE, 1381–1384.

[24] John R. Gilbert, Cleve Moler, and Robert Schreiber. 1992. Sparse Matrices in MATLAB: Design and Implementation.

SIAM J. Matrix Anal. Appl. 13, 1 (1992), 333–356. https://doi.org/10.1137/0613024 arXiv:https://doi.org/10.1137/0613024

[25] Felix Gremse, Andreas Hofter, Lars Ole Schwen, Fabian Kiessling, and Uwe Naumann. 2015. GPU-accelerated sparse

matrix-matrix multiplication by iterative row merging. SIAM Journal on Scienti�c Computing 37, 1 (2015), C54–C71.

[26] Gaël Guennebaud, Benoit Jacob, et al. 2010. Eigen. URL: http://eigen.tuxfamily.org 3 (2010).

[27] Luanzheng Guo and Gokcen Kestor. 2023. On Higher-performance Sparse Tensor Transposition. In 2023 IEEE Interna-

tional Parallel and Distributed Processing Symposium Workshops (IPDPSW). 697–701.

[28] Fred G. Gustavson. 1978. Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition. ACM

Trans. Math. Softw. 4, 3 (sep 1978), 250–269. https://doi.org/10.1145/355791.355796

[29] Erik Hellsten, Artur Souza, Johannes Lenfers, Rubens Lacouture, Olivia Hsu, Adel Ejjeh, Fredrik Kjolstad, Michel

Steuwer, Kunle Olukotun, and Luigi Nardi. 2023. BaCO: A Fast and Portable Bayesian Compiler Optimization

Framework. arXiv:2212.11142 [cs.PL]

[30] Rawn Henry, Olivia Hsu, Rohan Yadav, Stephen Chou, Kunle Olukotun, Saman Amarasinghe, and Fredrik Kjolstad.

2021. Compilation of Sparse Array Programming Models. Proc. ACM Program. Lang. 5, OOPSLA, Article 128 (oct 2021),

29 pages. https://doi.org/10.1145/3485505

[31] Olivia Hsu, Maxwell Strange, Ritvik Sharma, Jaeyeon Won, Kunle Olukotun, Joel S. Emer, Mark A. Horowitz, and

Fredrik Kjølstad. 2023. The Sparse Abstract Machine. In Proceedings of the 28th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems, Volume 3 (ASPLOS 2023). Association for

Computing Machinery, New York, NY, USA, 710–726.

[32] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley. 2022. Exocompilation

for productive programming of hardware accelerators. In Proceedings of the 43rd ACM SIGPLAN International Conference

on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). 703–718.

[33] Inah Jeon, Evangelos E. Papalexakis, U Kang, and Christos Faloutsos. 2015. HaTen2: Billion-scale tensor decompositions.

In 2015 IEEE 31st International Conference on Data Engineering. 1047–1058. https://doi.org/10.1109/ICDE.2015.7113355

[34] Jeremy Kepner and John Gilbert. 2011. Graph Algorithms in the Language of Linear Algebra. Society for Industrial and

Applied Mathematics. https://doi.org/10.1137/1.9780898719918

[35] David R Kincaid, Thomas C Oppe, and David M Young. 1989. ITPACKV 2D user’s guide. Technical Report. Texas Univ.,

Austin, TX (USA). Center for Numerical Analysis.

[36] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classi�cation with Graph Convolutional Networks. In 5th

International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[37] Fredrik Kjolstad. 2020. Sparse Tensor Algebra Compilation. Ph.D. Thesis. Massachusetts Institute of Technology,

Cambridge, MA. http://tensor-compiler.org/�les/kjolstad-phd-thesis-taco-compiler.pdf

[38] Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe. 2019. Tensor Algebra Compilation with

Workspaces. (2019), 180–192. http://dl.acm.org/citation.cfm?id=3314872.3314894

[39] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The Tensor Algebra

Compiler. Proc. ACM Program. Lang. 1, OOPSLA, Article 77 (Oct. 2017), 29 pages. https://doi.org/10.1145/3133901

[40] Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applications. SIAM review 51, 3 (2009), 455–500.

[41] Tamara G. Kolda and Jimeng Sun. 2008. Scalable Tensor Decompositions for Multi-aspect Data Mining. In 2008 Eighth

IEEE International Conference on Data Mining. 363–372. https://doi.org/10.1109/ICDM.2008.89

[42] Scott P Kolodziej, Mohsen Aznaveh, Matthew Bullock, Jarrett David, Timothy A Davis, Matthew Henderson, Yifan Hu,

and Read Sandstrom. 2019. The suitesparse matrix collection website interface. Journal of Open Source Software 4, 35

(2019), 1244.

[43] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. 1997. A relational approach to the compilation of sparse matrix

programs. In Euro-Par’97 Parallel Processing: Third International Euro-Par Conference Passau, Germany, August 26–29,

1997 Proceedings 3. Springer, 318–327.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

https://doi.org/10.1137/0613024
https://arxiv.org/abs/https://doi.org/10.1137/0613024
https://doi.org/10.1145/355791.355796
https://arxiv.org/abs/2212.11142
https://doi.org/10.1145/3485505
https://doi.org/10.1109/ICDE.2015.7113355
https://doi.org/10.1137/1.9780898719918
https://openreview.net/forum?id=SJU4ayYgl
http://tensor-compiler.org/files/kjolstad-phd-thesis-taco-compiler.pdf
http://dl.acm.org/citation.cfm?id=3314872.3314894
https://doi.org/10.1145/3133901
https://doi.org/10.1109/ICDM.2008.89

Compilation of Modular and General Sparse Workspaces 196:25

[44] Scott Kovach, Praneeth Kolichala, Tiancheng Gu, and Fredrik Kjolstad. 2023. Indexed Streams: A Formal Intermediate

Representation for Fused Contraction Programs. Proc. ACM Program. Lang. 7, PLDI, Article 154 (jun 2023), 25 pages.

[45] Daniel Langr, Pavel Tvrdik, and Ivan Simecek. 2016. AQsort: Scalable multi-array in-place sorting with OpenMP.

Scalable Computing: Practice and Experience 17, 4 (2016), 369–391.

[46] Valentin Le Fèvre and Marc Casas. 2023. E�cient Execution of SpGEMM on Long Vector Architectures. In Proceedings

of the 32nd International Symposium on High-Performance Parallel and Distributed Computing (Orlando, FL, USA) (HPDC

’23). Association for Computing Machinery, New York, NY, USA, 101–113. https://doi.org/10.1145/3588195.3593000

[47] Jiajia Li, Yuchen Ma, Chenggang Yan, and Richard Vuduc. 2016. Optimizing sparse tensor times matrix on multi-core

and many-core architectures. In 2016 6th Workshop on Irregular Applications: Architecture and Algorithms (IA3). IEEE,

26–33.

[48] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. 2015. Sparse convolutional neural

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 806–814.

[49] Joseph W. H. Liu. 1992. The Multifrontal Method for Sparse Matrix Solution: Theory and Practice. SIAM Rev. 34, 1

(1992), 82–109. https://doi.org/10.1137/1034004 arXiv:https://doi.org/10.1137/1034004

[50] Weifeng Liu and Brian Vinter. 2014. An e�cient GPU general sparse matrix-matrix multiplication for irregular data.

In 2014 IEEE 28th international parallel and distributed processing symposium. IEEE, 370–381.

[51] Suzanne Mueller, Peter Ahrens, Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2020. Sparse Tensor

Transpositions. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (Virtual

Event, USA) (SPAA ’20). 559–561.

[52] Erdal Mutlu, Ruiqin Tian, Bin Ren, Sriram Krishnamoorthy, Roberto Gioiosa, Jacques Pienaar, and Gokcen Kestor. 2020.

Comet: A domain-speci�c compilation of high-performance computational chemistry. In International Workshop on

Languages and Compilers for Parallel Computing. Springer, 87–103.

[53] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. 2018. High-Performance Sparse Matrix-Matrix

Products on Intel KNL and Multicore Architectures. InWorkshop Proceedings of the 47th International Conference on

Parallel Processing (Eugene, OR, USA) (ICPP Workshops ’18). Article 34, 10 pages.

[54] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. 2017. High-performance and memory-saving sparse general

matrix-matrix multiplication for NVIDIA Pascal GPU. In 2017 46th International Conference on Parallel Processing (ICPP).

IEEE, 101–110.

[55] Thomas Neumann. 2011. E�ciently compiling e�cient query plans for modern hardware. Proceedings of the VLDB

Endowment 4, 9 (2011), 539–550.

[56] Yuyao Niu, Zhengyang Lu, Haonan Ji, Shuhui Song, Zhou Jin, and Weifeng Liu. 2022. TileSpGEMM: A tiled algorithm

for parallel sparse general matrix-matrix multiplication on GPUs. In Proceedings of the 27th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming. 90–106.

[57] Carlos Ordonez, Yiqun Zhang, and Wellington Cabrera. 2016. The Gamma matrix to summarize dense and sparse data

sets for big data analytics. IEEE Transactions on Knowledge and Data Engineering 28, 7 (2016), 1905–1918.

[58] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siying Feng, Chaitali Chakrabarti, Hun-

Seok Kim, David Blaauw, Trevor Mudge, and Ronald Dreslinski. 2018. Outerspace: An outer product based sparse

matrix multiplication accelerator. In 2018 IEEE International Symposium on High Performance Computer Architecture

(HPCA). IEEE, 724–736.

[59] Mathias Parger, Martin Winter, Daniel Mlakar, and Markus Steinberger. 2020. spECK: accelerating GPU sparse matrix-

matrix multiplication through lightweight analysis. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (San Diego, California) (PPoPP ’20). 362–375.

[60] Md Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Narayanan Sundaram, Jongsoo Park, Michael J Anderson,

Satya Gautam Vadlamudi, Dipankar Das, Sergey G Pudov, Vadim O Pirogov, and Pradeep Dubey. 2015. Parallel

e�cient sparse matrix-matrix multiplication on multicore platforms. In International Conference on High Performance

Computing. Springer, 48–57.

[61] Christoph Pichler, Paley Li, Roland Schatz, and Hanspeter Mössenböck. 2023. Hybrid Execution: Combining Ahead-

of-Time and Just-in-Time Compilation. In Proceedings of the 15th ACM SIGPLAN International Workshop on Virtual

Machines and Intermediate Languages (Cascais, Portugal) (VMIL 2023). 39–49.

[62] William Pugh and Tatiana Shpeisman. 1998. SIPR: A New Framework for Generating E�cient Code for Sparse Matrix

Computations. In Proceedings of the 11th International Workshop on Languages and Compilers for Parallel Computing

(LCPC ’98). Springer-Verlag, Berlin, Heidelberg, 213–229.

[63] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.

2013. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing

Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA, 519–530.

[64] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

https://doi.org/10.1145/3588195.3593000
https://doi.org/10.1137/1034004
https://arxiv.org/abs/https://doi.org/10.1137/1034004

196:26 Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad

[65] Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson, Stephen Chou, Shoaib Kamil, Saman Amarasinghe,

and Fredrik Kjolstad. 2020. A Sparse Iteration Space Transformation Framework for Sparse Tensor Algebra. Proc. ACM

Program. Lang. 4, OOPSLA, Article 158 (Nov. 2020), 30 pages. https://doi.org/10.1145/3428226

[66] Amir Shaikhha, Mathieu Huot, Jaclyn Smith, and Dan Olteanu. 2022. Functional Collection Programming with

Semi-Ring Dictionaries. Proc. ACM Program. Lang. 6, OOPSLA1, Article 89 (apr 2022), 33 pages.

[67] Navjot Singh, Zecheng Zhang, Xiaoxiao Wu, Naijing Zhang, Siyuan Zhang, and Edgar Solomonik. 2022. Distributed-

memory tensor completion for generalized loss functions in python using new sparse tensor kernels. J. Parallel and

Distrib. Comput. 169 (Nov. 2022), 269–285. https://doi.org/10.1016/j.jpdc.2022.07.005

[68] James E Smith. 1982. Decoupled access/execute computer architectures. ACM SIGARCH Computer Architecture News

10, 3 (1982), 112–119.

[69] Shaden Smith, Alec Beri, and George Karypis. 2017. Constrained Tensor Factorization with Accelerated AO-ADMM.

In 2017 46th International Conference on Parallel Processing (ICPP). 111–120. https://doi.org/10.1109/ICPP.2017.20

[70] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George Karypis. 2017. FROSTT: The

Formidable Repository of Open Sparse Tensors and Tools. http://frostt.io/

[71] Shaden Smith and George Karypis. 2015. Tensor-matrix products with a compressed sparse tensor. In Proceedings of

the 5th Workshop on Irregular Applications: Architectures and Algorithms. 1–7.

[72] Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, and George Karypis. 2015. SPLATT: E�cient and Parallel

Sparse Tensor-Matrix Multiplication. In 2015 IEEE International Parallel and Distributed Processing Symposium. 61–70.

[73] James M. Stichnoth and Thomas Gross. 1997. Code Composition as an Implementation Language for Compilers. In

Conference on Domain-Speci�c Languages (DSL 97). USENIX Association, Santa Barbara, CA.

[74] Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. 2018. The Sparse Polyhedral Framework: Composing

Compiler-Generated Inspector-Executor Code. Proc. IEEE 106, 11 (2018), 1921–1934.

[75] Scott Thibault, Lenore Mullin, and Matt Insall. 1994. Generating indexing functions of regularly sparse arrays for array

compilers. Technical Report. Technical Report, University of Missouri, Rolla, 1994, TR 94-08.

[76] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi. 2009. On the evolution of user interaction

in Facebook. In Proceedings of the 2nd ACM Workshop on Online Social Networks (WOSN ’09). 37–42.

[77] Hao Wang, Weifeng Liu, Kaixi Hou, and Wu-chun Feng. 2016. Parallel transposition of sparse data structures. In

Proceedings of the 2016 international conference on supercomputing. 1–13.

[78] Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Seidel, and Markus Steinberger. 2019. Adaptive sparse

matrix-matrix multiplication on the GPU. In Proceedings of the 24th symposium on principles and practice of parallel

programming. 68–81.

[79] Jaeyeon Won, Changwan Hong, Charith Mendis, Joel Emer, and Saman Amarasinghe. 2023. Uni�ed Convolution

Framework: A compiler-based approach to support sparse convolutions. Proceedings of Machine Learning and Systems

5 (2023).

[80] Haoran Xu and Fredrik Kjolstad. 2021. Copy-and-patch compilation: a fast compilation algorithm for high-level

languages and bytecode. Proceedings of the ACM on Programming Languages 5, OOPSLA (2021), 1–30.

[81] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. DISTAL: The Distributed Tensor Algebra Compiler. In Proceedings

of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI).

286–300.

[82] Yifan Yang, Joel S. Emer, and Daniel Sanchez. 2023. ISOSceles: Accelerating Sparse CNNs through Inter-Layer Pipelining.

In 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA). 598–610.

[83] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2023. SparseTIR: Composable Abstractions for Sparse

Compilation in Deep Learning. In Proceedings of the 28th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 3 (ASPLOS 2023). New York, NY, USA, 660–678.

[84] Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad. 2024. Compilation of Modular and General Sparse Workspaces.

arXiv:2404.04541 [cs.PL]

[85] Genghan Zhang, Yuetong Zhao, Yanting Tao, Zhongming Yu, Guohao Dai, Sitao Huang, Yuan Wen, Pavlos Petoumenos,

and Yu Wang. 2023. Sgap: towards e�cient sparse tensor algebra compilation for GPU. CCF Transactions on High

Performance Computing (2023), 1–18.

[86] Tuowen Zhao, Tobi Popoola, Mary Hall, Catherine Olschanowsky, and Michelle Strout. 2022. Polyhedral Speci�cation

and Code Generation of Sparse Tensor Contraction with Co-Iteration. ACM Trans. Archit. Code Optim. 20, 1, Article 16

(Dec 2022), 26 pages. https://doi.org/10.1145/3566054

[87] Ningxin Zheng, Bin Lin, Quanlu Zhang, Lingxiao Ma, Yuqing Yang, Fan Yang, Yang Wang, Mao Yang, and Lidong

Zhou. 2022. SparTA: Deep-Learning Model Sparsity via Tensor-with-Sparsity-Attribute. In 16th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 22). 213–232.

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 196. Publication date: June 2024.

https://doi.org/10.1145/3428226
https://doi.org/10.1016/j.jpdc.2022.07.005
https://doi.org/10.1109/ICPP.2017.20
http://frostt.io/
https://arxiv.org/abs/2404.04541
https://doi.org/10.1145/3566054

	Abstract
	1 Introduction
	2 Sparse tensor algebra expression taxonomy
	2.1 Index Variable Orderings
	2.2 Classification
	2.3 Limitation of Prior Work

	3 Overview
	4 Algorithm Template for Sparse Workspaces
	4.1 Tensor Component Abstraction
	4.2 The Accumulation Array and All Array
	4.3 Four-stage Template Model
	4.4 Recreating Prior Work with the ISM Framework

	5 Concrete Sparse Workspace Policies
	5.1 Data Structures
	5.2 Sorting Algorithms
	5.3 Optimizations
	5.4 Towards Parallel Sparse Workspaces

	6 Compilation
	6.1 Sparse Workspace Scheduling and Format Commands
	6.2 Automatic Sparse Workspace Insertion
	6.3 Code Generation

	7 Evaluation
	7.1 Methodology
	7.2 First-order Sparse Workspaces in Linear Algebra
	7.3 Second-order Sparse Workspaces in Linear Algebra
	7.4 Sparse Workspaces in Tensor Algebra
	7.5 Study of Sparse Workspace Design Choices

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

