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ABSTRACT
Many problems consist of a structured grid of points that
are updated repeatedly based on the values of a fixed set
of neighboring points in the same grid. To parallelize these
problems we can geometrically divide the grid into chunks
that are processed by different processors. One challenge
with this approach is that the update of points at the pe-
riphery of a chunk requires values from neighboring chunks.
These are often located in remote memory belonging to dif-
ferent processes. The naive implementation results in a lot
of time spent on communication leaving less time for useful
computation. By using the Ghost Cell Pattern communica-
tion overhead can be reduced. This results in faster time to
completion.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Performance

Keywords
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1. PROBLEM
Many problems can be modeled as a set of points in a

structured grid that are updated in successive iterations
based on the values of their neighbors from the previous
iteration. These problems can be divided geometrically into
chunks that are computed on different processors or cores.
However, since updating a point requires the values of its
neighbors, each chunk needs values from neighboring chunks
to update the points at its borders. How can we communi-
cate these values between processes in an efficient and struc-
tured manner?
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(b) Stencil that needs a cell from its neighbor

Figure 1: Stencil computation in geometrically de-
composed grids

2. CONTEXT
As mentioned above, many problems consist of a struc-

tured grid of points in N dimensions where the location of
each point in the grid defines its location in the problem do-
main. The values of the points are updated iteratively based
on the values of their neighbors from the previous iteration
(see Structured Grids and Iterative Refinement [6]). This
pattern of computation is also often called a convolution.

The set of neighboring points that influence the calcula-
tions of a point is often called a stencil. The stencil de-
fines how the value of a point should be computed from its
own and its neighbors’ values. It can take many forms and
can include points that are not directly adjacent to the cur-
rent point. Figure 1(a) shows a five-point Laplace operator,
which is a stencil we will use to find edges in an image. It
specifies that the value of a point in the current iteration
shall be the value of its left, right, up and down neighbors
from the previous iteration subtracted from its own value
multiplied by four. In addition to detecting edges, the five-
point Laplace operator can also be used to solve systems of
partial differential equations iteratively.

Geometric Decomposition [6] is a common pattern for cal-
culating the values of such grids in parallel using different



processes or threads. In the rest of this pattern we will use
the term process to encompass both processes and threads
unless we are talking about issues directly related to shared
memory in which case we will use the term thread. The
basic idea is to divide the grid into chunks and have each
process update one or more of these. As shown in figure 1(b)
a common problem with this approach is how to calculate
the values at the borders between chunks since these require
values from one or more neighboring chunks. Retrieving
the required points from the process processing the neigh-
bor chunk as they are needed is usually not a good solution
as it introduces a lot of small communication operations in
the middle of computation which leads to high latency costs
on most current systems.

3. FORCES

Performance vs Complexity A tension exists between
the need for performance and the complexity of the
implementation. You could simply have stencils fetch
cells as they are needed, but that would introduce a
lot of small messages that would severely hurt perfor-
mance. You also have to consider which optimizations
to implement. Examples of optimizations are trading
computation for communication, avoiding unnecessary
synchronization and overlapping communication and
computation. These optimizations may increase over-
all performance, but do so at the cost of increased com-
plexity and reduced maintainability.

Performance vs Portability Optimizations such as re-
ducing communication at the expense of increased com-
putation and avoiding unnecessary synchronization re-
quire you to make careful trade-offs and these trade-
offs are usually based on experimental results. How-
ever, these results vary from machine to machine and
often also from library to library. Therefore, a fast
application on one system may be a slow application
on another thus reducing performance portability. In
order to make it easier to move an application from
system to system, parameters that are likely to differ
should be made configurable through build or runtime
options.

Cost Of Copying vs Contention and Locality On
shared memory machines it is possible to avoid the
copying associated with ghost cells by having a global
set of points for the previous iteration that all the
threads read from. However, this increases the likeli-
hood of cache contention and false sharing as the pro-
cessor cores read and write to the same cache lines.
Additionally, on NUMA systems this results in some
cores having to read data from remote memories.1 Al-
ternatively, the chunks could be kept separate in mem-
ory to avoid false sharing. However, this would re-
duce locality and cache utilization as the borders of
the neighbors would not be located directly adjacent
to the data of the chunk itself.

1NUMA, Non-Uniform Memory Access, means that there is
one global memory address space, but that accessing differ-
ent parts of it does not take the same amount of time. This
is typically because there are several memories that are local
to different cores.
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Figure 2: Each chunk receives a vector of ghost cells
from neighboring chunks

Cost of Computation vs Communication Overhead
On distributed memory systems it is possible to trade
additional computation for less frequent communica-
tion by redundantly storing and updating cells that
belong to a different process locally. This leads to
some redundant computation, but may reduce time to
completion if the overhead of send operations is high.
However, the cost of performing the extra computa-
tion must be evaluated against the overhead cost of
sending messages, both of which will differ between
systems. This is discussed further in the context of
this pattern in section 5.1.

Size of Chunks As mentioned earlier, the Ghost Cell Pat-
tern is often used together with the Geometric Decom-
position pattern. One of the considerations when using
the latter is to select a chunk size that is small enough
to expose sufficient parallelism. However, this affects
the border exchanges as it causes the surface to vol-
ume ratio to increase. The surface to volume ratio is
the ratio between the surface area of a chunk and its
volume. As the size of a 3-dimensional chunk increases
its volume grows faster than its surface area, O(n3) vs
O(n2), which decreases the ratio. For 2-dimensional
problems we have a similar perimeter to area ratio to
care about (O(n2) vs O(n)). A high ratio means that
more of the time must be spent on communication so
that there is less time left to spend on useful compu-
tations.

Shape of Chunks The shape of the chunks also influence
the surface to volume, or perimeter to area, ratio. In
order to minimize it we want something close to a cir-
cle or a sphere, such as a hexagon. On the other hand
it is often desirable to use a simpler shape, such as a
square in order to decrease the implementation com-
plexity. Another, common shape is a rectangle as it
allows us to divide the grid along only one axis, but
results in a worse perimeter to area ratio that division
into squares.



Figure 3: Edge Detection

4. SOLUTION
Therefore, allocate space for a series of ghost cells around

the edges of each chunk. For every iteration have each pair
of neighbors exchange a copy of their borders and place the
received borders in the ghost cell region as shown in figure 2.
The ghost cells form a halo around each chunk that contains
replicates of the borders of all immediate neighbors. These
ghost images are not updated locally, but provide stencil
values when the borders of this chunk are updated

If you have a stencil that extends beyond immediate neigh-
bors or if you want to trade computation for communication
then use a Deep Halo (section 5.1). If your stencil requires
cells from diagonal neighbors then you must also exchange
Corner Cells (section 5.2). If you need higher performance
then Avoid Unnecessary Synchronization (section 5.3) or
Overlap Communication and Computation (section 5.4).

5. IMPLEMENTATION
Given an image we want to generate a new image contain-

ing the edges of the first one. This is called edge detection
and one way to do it is to repeatedly apply the Laplace oper-
ator from figure 1(a) to every pixel of the input image. The
Laplace operator measures how much each point differ from
its neighbors and figure 3 shows it applied many times to
Lena. The sequential C code for computing the Laplacian
on a gray-scale image is as follows:

1 void l a p l a c i a n ( ) {
2 for ( int i t e r =0; i t e r < ITERATIONS; ++i t e r ) {
3
4 // Compute the Laplacian
5 for ( int y=1; y < ( height −1); ++y) {
6 for ( int x=1; x < ( width −1); ++x) {
7 double p i x e l =
8 4 ∗ GET PIXEL( image , x , y )
9 − GET PIXEL( image , x−1, y )

10 − GET PIXEL( image , x+1, y )
11 − GET PIXEL( image , x , y−1)
12 − GET PIXEL( image , x , y+1);
13 GET PIXEL( bu f f e r , x , y ) =
14 BOUND( p ixe l , 0 . 0 , 1 . 0 ) ;
15 }
16 }
17
18 // Swap b u f f e r s
19 POINTER SWAP( bu f f e r , image ) ;
20 }
21 }

For each iteration of the outer loop the Laplacian is ap-
plied to every pixel of the image (line 5–16). GET PIXEL on
line 13 is a macro to retrieve the array location of the pixel

Figure 4: Edge detection without border exchanges

at location (x,y) from the buffer and BOUND on line 14 caps
the value of the given variable to the specified range.

Since the computations need the surrounding pixels from
the previous iteration we cannot easily update the image in
place and we will therefore use double buffering. This means
that we have two sets of values; one for the current iteration
and one for the previous. On line 19 we swap the buffers by
using the POINTER SWAP macro to swap the values of their
pointers. Note that the code has been simplified for clarity
by not computing the Laplacian at the image borders.

We will parallelize this code using the Single Program Mul-
tiple Data (SPMD) paradigm. We must first send roughly
equal parts of the image to each process before calling the
laplacian function and then merge these image parts again
after it has completed. One call to the laplacian function
will therefore only compute the Laplacian for a subset of
the image.

However, this leads to the problem in figure 1(b), where
each process needs pixels from the neighbors when comput-
ing its own border pixels. If we ignore the neighbor pixels we
get the result shown in figure 4. This figure shows Laplacian
edge detection applied to the image using four processors in
a Cartesian grid without any border exchanges. Notice the
noise at the inner borders between the image chunks.

In order to get rid of the noise we must perform a border
exchange for every iteration of the outer loop. The resulting
code, written in C using MPI[1], can look like the following:

1 void l a p l a c i a n ( ) {
2 for ( int i t e r =0; i t e r < ITERATIONS; ++i t e r ) {
3
4 // Exchange borders with a l l four ne ighbors
5 exchange ho r i z on ta l bo rde r s ( ) ; // MPI c a l l s
6 ex chang e v e r t i c a l b o rd e r s ( ) ; // in s i d e
7
8 // Compute the Laplacian
9 for ( int y=1; y < ( he ight +1); ++y) {

10 for ( int x=1; x < ( width +1); ++x) {
11 double p i x e l =
12 4 ∗ GET PIXEL( image chunk , x , y )
13 − GET PIXEL( image chunk , x−1, y )
14 − GET PIXEL( image chunk , x+1, y )
15 − GET PIXEL( image chunk , x , y−1)
16 − GET PIXEL( image chunk , x , y+1);
17 GET PIXEL( bu f f e r , x , y ) =
18 BOUND( p ixe l , 0 . 0 , 1 . 0 ) ;
19 }
20 }
21
22 // Swap b u f f e r s
23 POINTER SWAP( bu f f e r , image chunk ) ;
24 }
25 }
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Figure 5: Deadlock-free border exchanges

Since we are operating under the SPMD paradigm this
code is executed on every processor and operates on one
chunk of the image instead of all of it. Our chunks have
ghost cell halos extending one row/column in each direction
so we iterate from the second cell at index 1 to the last cell
before the right halo starts. Apart from that the biggest
difference from the previous code listing is on line 5–6 inside
the outer loop where the process perform border exchanges
with each of its neighbors. As such it switches between
performing computations in the nested loops and communi-
cation in the border exchange code. Note that there is no
need for a barrier here as all the necessary synchronization is
implicit in the exchanges. When a process receives its data
it is safe for it to proceed. The code listing below shows an
implementation of the exchange horizontal borders() function:

1 void exchange ho r i z on ta l bo rde r s ( ) {
2 i f ( x coord % 2 == 0) {
3 exchange eas t border ( ) ;
4 exchange west border ( ) ;
5 }
6 else {
7 exchange west border ( ) ;
8 exchange eas t border ( ) ;
9 }

10 }

To prevent a deadlock every other process performs border
exchanges in the reverse order. This prevents all the pro-
cesses from waiting for the west border before any of them
sends the east border. If a process’ x coordinate is divisi-
ble by two (line 2) it exchanges its east border before the
west. If it is not divisible by two, then it exchanges the west
border first. Figure 5 illustrates an example exchange with
6 processes in the x direction. The pairs <0, 1>, <2, 3>
and <4, 5> exchange borders first by executing line 3 and
7 respectively. Then the pairs <1, 2> and <3, 4> exchange
borders by executing line 4 and 8. Thus border exchanges al-
ways have a matching receiver and no deadlocks occur. The
function exchange vertical borders() is implemented similarly.

The following code shows one possible implementation of
the exchange west border() function that is called on line 4
and 7 in the previous listing:

1 void exchange west border ( ) {
2 i f ( west ne ighbor != −1)
3 MPI Sendrecv(&GET PIXEL( image chunk , 1 , 1 ) ,
4 1 , v e r t i c a l b o r d e r t ,
5 west ne ighbor , TAG,
6 &GET PIXEL( image chunk , 0 , 1 ) ,
7 1 , v e r t i c a l b o r d e r t ,
8 west ne ighbor , TAG,
9 ca r t e s i an , &s ta tu s ) ;

10 }

On line 2 we specify that we will only perform a bor-
der exchange with the western neighbor if it exists. The
MPI Sendrecv function performs a send and a receive in a
deadlock-free manner and is therefore the most obvious can-
didate to use for the exchange. However, as we shall see later
in the Avoid Unnecessary Synchronization section it is not
the most efficient one. The parameters on line 3–5 specify
the data being sent. Since we are exchanging borders with
the western neighbor in this function we send the first col-
umn of the chunk that is not a part of the ghost cell region.
This column is located at coordinate (1,1). vertical border t

is a custom type describing one column of data. TAG is a
just a name identifying the transmission. Line 6–8 specifies
the same for the column we are receiving from the western
neighbor and placing in the ghost region at coordinate (0,1).
The other border exchanges are defined similarly. Running
the new algorithm with border exchanges gives us the noise-
free edge detection we saw in figure 3.

5.1 Deep Halo
The previous section discussed the use of a halo of ghost

cells and disciplined border exchanges to get correct results
at the inner borders between chunks that are computed by
different processes. That solution used a border with a thick-
ness of one since that is sufficient to correctly implement the
five-point Laplacian. However, there are a two situations
that either require or benefit from a deeper halo.

The first situation is when the stencil we want to apply
to the grid reaches further than the immediate neighboring
cells. In that case we must use a deep halo for correctness
and it can be implemented by extending the previous code
to reserve space for more columns and to send more than
one border row/column in each border exchange.

The second and more interesting case is the use of a deep
halo to reduce the number of send operations. There are
two components to the cost of sending a message between
processes. The first is the time it takes from the call to send
a message is issued to the receiving processor starts receiv-
ing data called the latency of the send. This part depends
on the local overhead involved in preparing the message as
well as the network latency and is the overhead of send-
ing the message. The second part is the time it actually
takes to transmit the data, which depends on the network
bandwidth and the size of the message. It is not uncommon
for the message overhead/latency to far exceed the actual
transmission time of messages. Since the network latency is
constant for all messages an effective strategy to maximize
overall performance is to reduce the number of messages by
merging them.

One way this can be done for border exchanges is by in-
creasing the depth of the halo by some factor n beyond the
cells actually needed for correctness. This way, if we started
out with a halo of size one, we can limit the border ex-
changes to every nth iteration and then exchange n rows and
columns. While the amount of data transfered is essentially
the same, the number of messages decreases. Fewer mes-
sages means less messaging overhead, which reduces the cost
of communication. Figure 6 demonstrates how this would
work for a halo width of three.

The cost of increasing the halo’s width is that we have
to keep it updated locally, which adds to the computational
work and storage requirements. This is shown as arrows in
the figure. Still, communication is expensive and it is often
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Figure 6: Deep Halo with a Border Exchange every
nth iteration

beneficial to trade less frequent communication for redun-
dant work. Of course this trade-off must be made so that
the cost of the extra work does not exceed the cost of the
overhead we removed. Furthermore, the trade-off depends
heavily on the target machine’s communication capabilities
which can vary greatly between different machines. Deep
halos therefore reduce the performance portability of the
application.

Building on the edge detection example the we will now
expand it to use deep borders to trade redundant compu-
tation for less frequent communication. The following code
adds this capability to the laplacian () function:

1 void l a p l a c i a n ( ) {
2 for ( int i t e r =0; i t e r < ITERATIONS; ++i t e r ) {
3
4 // Exchange borders with a l l four ne ighbors
5 i f ( i t e r % border == 0) {
6 exchange ho r i z on ta l bo rde r s ( ) ;
7 e x chang e v e r t i c a l b o rd e r s ( ) ;
8 }
9

10 // Compute the Laplacian
11 for ( int y=1; y<(he ight+2∗border )−1; ++y) {
12 for ( int x=1; x<(width+2∗border )−1; ++x) {
13 double p i x e l =
14 4 ∗ GET PIXEL( image chunk , x , y )
15 − GET PIXEL( image chunk , x−1, y )
16 − GET PIXEL( image chunk , x+1, y )
17 − GET PIXEL( image chunk , x , y−1)
18 − GET PIXEL( image chunk , x , y+1);
19 GET PIXEL( bu f f e r , x , y ) =
20 BOUND( p ixe l , 0 . 0 , 1 . 0 ) ;
21 }
22 }
23
24 // Swap b u f f e r s
25 POINTER SWAP( bu f f e r , image chunk ) ;
26 }
27 }
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Figure 7: Stencil operators that use corner cells
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Figure 8: Two Dimensional Border Exchange with
a Nine-Point Stencil

Line 5 checks if the current iteration is a multiple of the
border size and only performs border exchanges when it is.
Furthermore, on line 11–12 the loop bounds are updated
to include the halo, except for the outermost row/column,
in the computations. This ensures that the values flowing
from the halo into the chunk are also correct for iterations
that don’t include a border exchange. In addition to this we
have to update the border exchange functions to exchange a
larger halo, but that change is fairly straightforward and is
not shown here. Finally, note that keeping the halo correctly
updated using the above code requires access to the halo
corners. This is discussed further in the following section.

5.2 Corner Cells
In some cases it is not sufficient to just exchange the imme-

diate left, right, up and down borders. Consider for instance
the operators shown in figure 7. These operators can be used
for more precise edge detection that converges faster than
when using the five-point Laplace operator. Both the nine-
point Laplacian and the Sobel operator require the value of
the cells that that comes from diagonal neighbors. Figure 8
shows how these cells are not exchanged with the schemes
discussed so far.

Another case where we need to communicate cells from
diagonal blocks is when we have a deeper halo than we need
to in order to decrease the number of sends as explained in
the previous section. In this case we need the corners of the
ghost cell halo to (redundantly) update the values in the rest
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Figure 9: Border Exchange in two waves to copy corner cells across diagonals. One cell is marked to show
its journey to the diagonal neighbor.

of the halo between the border exchange iterations.
A common way to solve this problem is to perform the bor-

der exchanges along each dimensional axis as independent
waves where each wave updates the halos in one direction.
Consider the two dimensional border exchange shown in fig-
ure 9. In the first wave the processes perform horizontal
border exchanges and if the chunks are of size n ∗ n then
they exchange n cells with their left and right neighbors.
Therefore, when the second wave starts the processes have
already received the borders from their horizontal neighbors
and can include corner cells from these in the vertical border
exchanges. This effectively folds the corner exchanges into
the second wave. This wave will therefore exchange rows
that are n + 2 wide (more if we have a Deep Halo) where
the cells on each side of the border are the corners. For two
dimensional exchanges this saves us from having to perform
four extra exchanges per chunk to exchange corners with
diagonal neighbors.

5.3 Avoid Unnecessary Synchronization
When implementing a solution to an iterative grid prob-

lem using ghost cells some synchronization is required to
ensure that the border exchanges complete before the com-
putations that need the ghost cells start. That is, a certain
amount of synchronization is inherent in the chosen solu-
tion. However, when implementing the solution it is de-
sirable to avoid additional synchronization constraints that
are not strictly necessary, in order to get good performance.
The implementation should perform as much synchroniza-
tion as is necessary, but no more. This may sound obvious,
but when using an API such as MPI many communication
operations also implicitly serve as synchronization points.
This can slow down the implementation.

For example, the semantics of MPI Send (and MPI Sendrecv)
is that it may block until the receiver starts to receive the
message. The implementation is allowed to try to buffer the
message and return before the matching receive is issued,

but for portable programs one can not depend on this and
must assume MPI Send is a synchronization point. In addi-
tion even implementations that perform message buffering
can run out of buffer space at which point they must revert
to synchronous send operations.

Using synchronous send operations when performing bor-
der exchanges with n neighbors adds the constraint to the
application that the sends have to be performed in the order
in which they appeared in the code. However, no such order-
ing is required by the solution. Since most parallel machines
don’t have a direct communication path between every pro-
cessor pair this means that the environment cannot take
advantage of the fact that the path to some of the neighbors
might be free while the path to the receiver of the current
send is busy [4]. Furthermore, it cannot take advantage of
systems that can perform multiple sends in parallel.

The solution is to remove the unnecessary synchronization
inherent in the synchronous sends by instead using asyn-
chronous send operations. This leaves the environment free
to send the messages in any order. It can, for example,
send messages whose receiver lies at the end of a path that
is not heavily loaded first and thereby avoid bottlenecks in
the communication network. Additionally, since it is free to
send messages in any order it can send multiple messages in
parallel where this is supported. Finally, since avoiding un-
necessary synchronization gives the environment more free-
dom to choose the best approach it increases performance
portability as well.

In section 5 the functions exchange horizontal borders and
exchange vertical borders are called to perform deadlock-free
border exchange with all neighbors. Those functions are
correct, but they impose an artificial ordering on the bor-
der exchanges. The following code addresses this problem
by replacing the synchronous MPI Sendrecv in the border
exchange phase with calls to the asynchronous and non-
blocking functions MPI Isend and MPI Irecv [4]:



1 void exchange borders ( ) {
2
3 // S ta r t asynchronous ghos t c e l l r e c e i v e s
4 for ( int i =0; i < num neighbors ; ++i ) {
5 MPI Irecv ( g h o s t c e l l s [ i ] , len ,
6 border types [ i ] ,
7 ne ighbors [ i ] , tag , comm,
8 &reque s t s [ i ] ) ;
9 }

10
11 // S ta r t asynchronous border sends
12 for ( int i =0; i < num neighbors ; ++i ) {
13 MPI Isend ( borders [ i ] , len ,
14 border types [ i ] ,
15 ne ighbors [ i ] , tag , comm,
16 &reque s t s [ num neighbors+i ] ) ;
17 }
18
19 MPI Waitall (2∗ num neighbors , r eques t s ,
20 s t a t u s e s ) ;
21 }

The code first schedules the receives of borders from all
the neighbors of the process into its ghost cell region. Since
the receives are non-blocking the function calls returns im-
mediately. Note that with non-blocking receives the user has
to supply the memory that MPI will put the received data
in. In this code the neighbor border data is placed directly
into the ghost cell regions.

The semantics of MPI Irecv only guarantees that this buffer
will be filled with the message at some point in the future.
Until that time the contents of the buffer is undefined. We
can query MPI for the status of the receive using MPI Test or
MPI TestAny. We can also ask MPI to block until the receive
completes using MPI Wait, MPI Waitany or MPI Waitall.

After posting all the receives the code schedules the match-
ing sends to each neighbor using MPI Isend. Like MPI Irecv,
it returns immediately and does not need to wait for the
matching receive to be initiated. This means that the envi-
ronment is free to send the messages in any order and thus
take advantage of lightly loaded network paths. Then, on
line 19, a call to MPI Waitall tells MPI to wait for the com-
pletion of all the message transmissions before continuing.

By restructuring our send operations in this way we have
reduced the amount of synchronization to only what is actu-
ally required by the solution. That is, one synchronization
point to ensure all the sends are completed before beginning
the next computation phase as opposed to one synchroniza-
tion point for every send.

5.4 Overlap Communication and Computation
In the previous sections we implemented edge detection

by alternating between communication and computation.
We used synchronization calls, whether implicit such as

MPI Sendrecv or explicit like MPI Waitall, to ensure that all
processes had completed all communication before moving
on to compute the next iteration. Thus the system would
at any given point either be communicating or computing.

However, on many systems communication and compu-
tation can be done simultaneously. That is, a process can
perform computation while waiting for a message to arrive
at its destination. In MPI we can take advantage of this by
using asynchronous functions, like MPI Isend and MPI Irecv.

In the previous section we used these functions to remove
the need for sends and receives to happen in any particu-
lar order. We first registered all the sends and receives we
needed with the MPI runtime and then we called MPI Waitall

to wait for their completion.
Since communication is expensive on most modern sys-

tems the processes are likely to spend significant time wait-
ing at this synchronization point for all the border exchanges
to complete. This leaves processor cores unused, wasting
precious compute cycles. If we can find some useful work
for the processor cores to do while they wait for the border
exchanges to complete then we will avoid this waste. This
means that the iterative algorithm will complete faster. In
other words, we can hide some of the cost of communication
by doing it in the background while we continue to make
progress on the computation. This technique of hiding the
communication cost is known as latency hiding.

In the ideal case we will have enough work to do to hide all
of the communication. Furthermore, if the communication
overhead is roughly equal to the time spent computing we
can approach a 2x speedup using this technique.

The following code shows one approach to overlap commu-
nication with computation when using ghost cells and can
be contrasted to the first parallel Laplacian implementation
in the second code listing in section 5:

1 void l a p l a c i a n ( ) {
2
3 // I n i t i a l Border Exchange
4 exchange borders ( ) ;
5
6 for ( int i t e r =0; i t e r < ITERATIONS; ++i t e r ) {
7
8 // Compute the Laplacian fo r the borders
9 l ap l a c i a n bo rd e r s ( ) ;

10
11 // S ta r t asynchronous ghos t c e l l r e c e i v e s
12 // and border sends
13 exchange bo rde r s s t a r t ( ) ;
14
15 // Compute the Laplacian fo r the i n t e r i o r
16 l a p l a c i a n i n t e r i o r ( ) ;
17
18 // Block u n t i l a l l border exchanges completes
19 MPI Waitall (2∗ num neighbors , r eques t s ,
20 s t a t u s e s ) ;
21
22 // Swap b u f f e r s
23 POINTER SWAP( bu f f e r , image chunk ) ;
24 }
25 }

The laplacian function first performs an initial border ex-
change by calling the exchange borders function from the pre-
vious section. This ensures that the ghost cells of the initial
image chunks are initialized so that the first iteration of the
main loop can use them to compute the borders.

The main loop that starts at line 6 consists of five stages.
The first stage computes the Laplacian for the borders of
the image as shown in figure 10(a). The results are stored
in the temporary buffer as before (recall that we are using
double buffering).

After the borders of the image have been computed and
stored in the temporary buffer the algorithm is finished with
them and can start transferring them to the neighbors’ ghost
cell regions. This transfer is started in the second stage by
calling the exchange borders start function. This function is
similar to the exchange borders function, except that it only
initiates the sends and receives and does not call MPI Waitall

to wait for their completion. It is therefore an asynchronous
function.

Now that the border exchanges have been initiated we
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Figure 10: Overlapping Communication and Com-
putation

want to use the time until they complete to do something
useful. Since the code has only computed the Laplacian
for the borders we have the entire interior left to compute
and we can do this while the borders are transfered across
the interconnects. The third stage therefore computes the
Laplacian for the interior. Thus, the borders exchanges and
the interior computations are performed in parallel and they
are both depicted in figure 10(b).

When the code is done computing the interior we have no
more work to do so we call MPI Waitall to wait for all the
border exchanges to complete.

Once the border exchanges are done the temporary buffer
contains a complete new version of the image chunk with
the Laplacian applied and the algorithm therefore swaps the
buffers to set the stage for the next iteration.

6. KNOWN USES
The Ghost Cell pattern is most commonly used in dis-

tributed memory systems where processors cannot access
each others memory. However, it is also applicable to shared
memory and NUMA (Non-Uniform Memory Access) sys-
tems to increase locality. It is widely used in image pro-
cessing as well as in various structured grid computations.
Examples of the latter include weather and atmospheric sim-
ulations and fluid dynamics where physical effects are simu-
lated by repeatedly solving systems of differential equations
using a method such as the Jacobi method. Specifically,
these simulations have one equation per point in 3D space
and each equation depends on a set of neighboring points.

Although we have focused on the use of Ghost Cells in
structured grid computations the pattern is also commonly
used when parallelizing iterative algorithms involving un-
structured grids and graphs.

3The ‖ symbol is often used to denote that two things hap-
pen in parallel.

PETSc is a popular framework for solving scientific prob-
lems modeled by partial differential equations that uses bor-
der exchanges to communicate ghost nodes [2]. It is widely
used for scientific computations in areas ranging from nano-
simulations, imaging and surgery to fusion, geosciences and
wave propagation. By using a framework like PETSc where
possible you can avoid having to re-implement this pattern
yourself.

Another use is in cellular automata where new genera-
tions of cells are repeatedly created based on the previous
generation and certain rules of interaction.4 The rules gov-
erning the updates of each cell are based on the states of
a pre-determined set of neighboring cells from the previous
generation (a stencil). These computations can therefore
use the Ghost Cell pattern to perform the communication
between each generation [7].

7. RELATED PATTERNS

Shared Data[6] In shared memory systems Shared Data
is an alternative to the Ghost Cell pattern. Using this
pattern a global grid can be shared between multiple
threads through shared memory instead of distributing
chunks of it to different processes.

Scratchpad This is a common alternative to the Ghost
Cell pattern on GPUs. On some of these systems, the
processing cores have local memories,5 but data can
not be moved directly between these. The Ghost Cell
pattern can therefore not be used. In the Scratchpad
pattern the whole grid is maintained in global mem-
ory. Chunks of this, including the ghost cell halos,
are moved to local memories for computation, but are
moved back to global memory before the start of the
next iteration.

Geometric Decomposition[6] Data structures like grids
that have been decomposed using the Geometric De-
composition pattern are often used for iterative stencil
computations. In those cases the Ghost Cell pattern
is almost always used to handle the communication
between each iteration.

Structured Grids[6] Structured Grid computations are usu-
ally stencil computations performed in iterations. When
these computations are parallelized the Ghost Cell pat-
tern is a good fit to perform the communication re-
quired to provide the values for the stencils.

Unstructured Grids[6] Unstructured Grids are, as the
name implies, less regular than Structured Grids. The
Ghost Cell pattern is nonetheless also useful when solv-
ing problems involving these. However, issues specific
to Unstructured Grids are not covered here.

Sparse Linear Algebra[6] Iterative methods for systems
of linear equations such as Jacobi and Gauss-Seidel re-
quire global communication in general. However, when
applied to certain problems in sparse linear algebra
where the equations have few terms, such as systems of

4A famous example of cellular automata is Conway’s Game
of Life.
5These are often called shared memories, which is the term
used in the CUDA programming model.



partial differential equations, the communication goes
from global to local. Examples of such differential
equations are the Laplacian and Poisson equations. In
these situations the Ghost Cell pattern is a good candi-
date for performing necessary communication between
each iteration.

Graph Algorithms[6] Graph Algorithms sometimes take
the form of iterative stencil computations and are par-
allelized by partitioned the graph and distributing the
subgraphs to different processes. In these cases the
Ghost Cell pattern is a strong candidate for perform-
ing the necessary communication between each itera-
tion. However, issues specific to Graph Algorithms are
not covered here.

Iterative Refinement[6] The iterative refinement pattern
perform successive refinements until some exit condi-
tion is met. If these computations are based on a sten-
cil of neighbors then the Ghost Cell pattern is a good
candidate for the communication of these neighboring
values.

Collective Communication Patterns[3] Like the Ghost
Cell pattern the patterns in the Collective Commu-
nication pattern language deal with structured com-
munication between several processors. However, the
Collective Communication patterns deal with global
structured communication while the Ghost Cell pat-
tern deal with local structured communication and they
are therefore different.

Wavefront[5] The Wavefront pattern can be used to paral-
lelize dynamic programming problems. In this pattern
one has a set of values in N dimensions that must be
computed where each value, due to memoization, de-
pends on the values of the left and upper neighbors
from the same iteration. The computations thus take
the form of a diagonal sweep that resembles a wave-
front. Although the Wavefront pattern share some of
the characteristics of the Ghost Cell pattern it is dif-
ferent because the neighboring values are taken from
the same iteration, not the previous one. Another dif-
ference is that the communication is one-way while it
is two-way in border exchanges.
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