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ABSTRACT
It is common for object-oriented programs to have both mu-
table and immutable classes. Immutable classes simplify
programing because the programmer does not have to rea-
son about side-effects. Sometimes programmers write im-
mutable classes from scratch, other times they transform
mutable into immutable classes. To transform a mutable
class, programmers must find all methods that mutate its
transitive state and all objects that can enter or escape
the state of the class. The analyses are non-trivial and the
rewriting is tedious. Fortunately, this can be automated.

We present an algorithm and a tool, Immutator, that en-
ables the programmer to safely transform a mutable class
into an immutable class. Two case studies and one con-
trolled experiment show that Immutator is useful. It (i) re-
duces the burden of making classes immutable, (ii) is fast
enough to be used interactively, and (iii) is much safer than
manual transformations.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement

General Terms: Design, Management

Keywords: Program transformation, immutability

1. INTRODUCTION
An immutable object is one whose state can not be mu-

tated after the object has been initialized and returned to
a client. By object state we mean the transitively reachable
state. That is, the state of the object and all state reachable
from that object by following references.

Immutability makes sequential programs simpler. An im-
mutable object, sometimes known as a value object [17], is
easier to reason about because there are no side-effects [7].
Applications that use immutable objects are therefore sim-
pler to debug. Immutable objects facilitate persistent stor-
age [2], they are good hash-table keys [12], they can be
compared very efficiently by comparing identities [2], they
can reduce memory footprint (through interning/memoiza-
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tion [12,14] or flyweight [8]). They also enable compiler opti-
mizations such as reducing the number of dynamic reads [16].
In fact, some argue that we should always use immutable
classes unless we explicitly need mutability [3].

In addition, immutability makes distributed programming
simpler [2]. With current middleware technologies like Java
RMI, EJB, and Corba, a client can send messages to a dis-
tributed object via a local proxy. The proxy implements an
update protocol, so if the distributed object is immutable
then there is no need for the proxy.

Moreover, as parallel programming becomes ubiquitous in
the multicore era, immutability makes parallel programming
simpler [9,13]. Since threads can not change the state of an
immutable object, they can share it without synchroniza-
tion. An immutable object is embarrassingly thread-safe.

However, mainstream languages like Java, C#, and C++
do not support deep, transitive immutability. Instead, they
only support shallow immutability through the final, read-
only, and const keywords. This is not enough, as these key-
words only make references immutable, not the objects ref-
erenced by them. Thus, the transitive state of the object
can still be mutated.

To get the full benefits of immutability, deep immutability
must therefore be built into the class. If a class is class
immutable, none of its instances can be transitively mutated.
Examples in Java include String and the classes in the Number

class hierarchy.
It is common for OO programs to contain both mutable

and immutable classes. For example, the JDigraph open-
source library contains MapBag and ImmutableBag. MapBag is in-
tended for cases where mutation is frequent, and Immutable-

Bag where mutations are rare.
Sometimes programmers write an immutable class from

scratch, other times they refactor a mutable class into an
immutable class. The refactoring can be viewed as two re-
lated technical problems:

1. The conversion problem consists of generating an im-
mutable class from an existing mutable class.

2. The usage problem consists of modifying client code to
use the new immutable class in an immutable fashion.

This paper solves the conversion problem. To create an
immutable class from a mutable class (from here on referred
as the target class), the programmer needs to perform sev-
eral tasks. The programmer must search through the meth-
ods of the target class and find all the places where the
transitive state is mutated. This task is further complicated



by polymorphic methods and mutations nested deep inside
call chains that may extend into third party code.

Moreover, the programmer must ensure that objects in
the transitive state of the target class do not escape from
it, otherwise they can mutated by client code. Such escapes
can happen through return statements, parameters, or static
fields. Finding objects that escape is non-trivial. For exam-
ple, an object can be added to a List that is returned from
a method, causing the object to escape along with the List.

Furthermore, once the programmer found all mutations,
she must rewrite mutator methods, for example by convert-
ing them to factory methods. She must also handle objects
that enter or escape the class, for example by cloning them.

In 346 cases we studied these code transformations re-
quired changing 45 lines of code per target class, which is
tedious. Furthermore, it required analyzing 57 methods in
the call graph of each target class to find mutators and
entering/escaping objects. Because this analysis is inter-
procedural and requires reasoning about the heap, it is non-
trivial and error-prone. In a controlled experiment where
6 experienced programmers converted JHotDraw classes to
immutable counterparts, they took an average of 27 minutes,
and introduced 6.37 bugs per class.

To alleviate the programmer’s burden when creating an
immutable class from a mutable class, we designed an algo-
rithm and implemented a tool, Immutator, that works on Java
classes. We developed Immutator on top of Eclipse’s refactor-
ing engine. Thus, it offers all the convenience of a modern
refactoring tool: it enables the user to preview and undo
changes and it preserves formating and comments. To use
it the programmer selects a target class and chooses Gener-

ate Immutable Class from the refactoring menu. Immutator

then verifies that the transformation is safe, and rewrites
the code if the preconditions are met. However, if a precon-
dition fails, it warns the programmer and provides useful
information that helps the programmer fix the problem.

At the heart of Immutator are two inter-procedural anal-
yses that determine the safety of the transformation. The
first analysis determines which methods mutate the transi-
tive state of the target class. The second analysis is a class
escape analysis that detects whether objects in the transi-
tive state of the target class state may escape. Although
Immutator transforms the source code, the analyses work on
bytecode and correctly account for the behavior of third-
party Java libraries.

There is a large body of work [1,18–20] on detecting whether
methods have side effects on program state. Previous analy-
ses were designed to detect any side effect, including changes
to objects reachable through method arguments and static
variables. In contrast, our analysis intersects the mutated
state with the objects reachable through the this reference.
Therefore, it only reports methods that have a side effect on
the current target object’s state.

Similarly, previous escape analyses [4, 24] report any ob-
ject that escapes a method, including locally created objects.
Our analysis only reports those escaping objects that are
also a part of the transitive state of the target class.

This paper makes the following contributions:

Problem Description While there are many approaches
to specifying and checking immutability this is, to the
best of our knowledge, the first paper that describes
the problems and challenges of transforming a mutable
class into an immutable class.

Transformations We present the transformations that con-
vert a Java class to an immutable Java class.

Algorithm We have developed an algorithm to automat-
ically convert a mutable class to an immutable class.
The algorithm performs two inter-procedural analyses;
one that determines the mutating methods, and one
that detects objects that enter or escape the target
class. Based on information retrieved from these and
other analyses our algorithm checks preconditions and
performs the mechanical transformations necessary to
enforce immutability.

Implementation We have implemented the analyses and
code transformations in a tool, Immutator, that is inte-
grated with the Eclipse IDE.

Evaluation We ran Immutator on 346 classes from known
open-source projects. We also studied how open-source
developers create immutable classes manually. Ad-
ditionally, we designed a controlled experiment with
6 programmers transforming JHotDraw classes manu-
ally. The results show that Immutator is useful. First,
the transformation is widely applicable: in 33% of the
cases Immutator was able to transform classes with no
human intervention. Second, several of the manually-
performed transformations are not correct: open-source
developers introduced an average of 2.1 errors/class,
while participants introduced 6.37 errors/class; in con-
trast, Immutator is safe. Third, on average, Immutator

runs in 2.33 seconds and saves the programmer from
analyzing 57 methods and changing 45 lines per trans-
formed class. In contrast, participants took an average
of 27 minutes per class. Thus, Immutator dramatically
improves programmer productivity.

Immutator as well as the experimental data can be down-
loaded from: http://refactoring.info/tools/Immutator

2. MOTIVATING EXAMPLE
We describe the problems and challenges of transforming

a mutable class into an immutable class using a running ex-
ample. Class Circle, shown on the left-hand side of Fig. 1,
has a center, stored in field c, and a radius, stored in field r.
There are several methods to modify or retrieve the state.
The programmer decides to transform this class into an im-
mutable class, since it makes sense to treat mathematical
objects as value objects.

Transforming even a simple class like Circle into an im-
mutable class, as shown on the right-hand side of Fig. 1,
is non-trivial. First, the programmer must find all the mu-
tating methods. Method setRadius on line 19 is a direct
mutator, and is easy to spot because it assigns directly to a
field. Method moveTo(int, int) on line 27 is a mutator too.
However, the code on line 30 does not change the value of
c directly, but instead changes the object that c references.
Therefore, this method mutates the transitive state of Cir-

cle. Method moveBy on line 34 is another mutator that does
not mutate the object directly. Instead, it mutates state
indirectly by calling moveTo(Point). Finding all mutators
(transitive and indirect) is complicated by long call chains,
polymorphic methods, aliases, and third-party library code.

Furthermore, the programmer must locate all the places
where an object enters or escapes the target class. Con-
sider a client that creates a Point object and passes it to

http://refactoring.info/tools/Immutator


1 public c lass Ci r c l e {
2 private Point c = new Point (0 , 0 ) ;
3 private int r = 1 ;
4
5
6
7
8
9

10
11
12
13
14
15 public int getRadius ( ) {
16 return r ;
17 }
18
19 public void setRadius ( int r ) {
20 this . r = r ;
21 }
22
23 public void moveTo( Point p) {
24 this . c = p ;
25 }
26
27 public void moveTo( int x , int y ) {
28
29
30 c . s e tLocat i on (x , y ) ;
31
32 }
33
34 public void moveBy( int dx , int dy ) {
35 Point cente r = new Point ( c . x+dx , c . y+dy ) ;
36 moveTo( cente r ) ;
37
38 }
39
40 public Point getLocat ion ( ) {
41 return c ;
42 }
43 }

1 public f ina l c lass ImmutableCircle {
2 private f ina l Point c ;
3 private f ina l int r ;
4
5 public ImmutableCircle ( ) {
6 this . c = new Point (0 , 0 ) ;
7 this . r = 1 ;
8 }
9

10 private ImmutableCircle ( Point c , int r ) {
11 this . c = c ;
12 this . r = r ;
13 }
14
15 public int getRadius ( ) {
16 return r ;
17 }
18
19 public ImmutableCircle setRadius ( int r ) {
20 return new ImmutableCircle ( this . c , r ) ;
21 }
22
23 public ImmutableCircle moveTo( Point p) {
24 return new ImmutableCircle (p . c l one ( ) , this . r ) ;
25 }
26
27 public ImmutableCircle moveTo( int x , int y ) {
28 ImmutableCircle t h i s =
29 new ImmutableCircle ( this . c . c l one ( ) , this . r ) ;
30 t h i s . c . s e tLocat i on (x , y ) ;
31 return t h i s ;
32 }
33
34 public ImmutableCircle moveBy( int dx , int dy ) {
35 Point cente r = new Point ( c . x+dx , c . y+dy ) ;
36 ImmutableCircle t h i s = moveTo( cente r ) ;
37 return t h i s ;
38 }
39
40 public Point getLocat ion ( ) {
41 return c . c l one ( ) ;
42 }
43 }

Figure 1: Immutator converts a mutable Circle (left pane) into an immutable class (right pane).

moveTo(Point). Since the client holds a reference to the
point, it can still mutate the object through the retained
reference. The programmer may not have access to all ex-
isting and future client code so she must conservatively as-
sume that the target class can be mutated through entering
and escaping objects. Therefore, to enforce deep immutabil-
ity, the programmer must find all the places where objects
enter the target class (line 23–24) or escape (line 41), and
clone them. However, the programmer should avoid exces-
sive cloning and only clone where absolutely required.

Even for this simple example, the transformation requires
inter-procedural analysis (line 30 and 36), which must take
pointers into account (line 30). Our approach combines the
strength of the programmer (the higher-level understand-
ing of where immutability should be employed) with the
strengths of a tool (analyzing many methods and making
mechanical transformations).

Immutator automatically handles the rewriting (Section 4)
and analysis (Section 5) required to make a class immutable.

3. IMMUTATOR
We implemented our algorithm for Generate Immutable

Class as a plugin in the Eclipse IDE. To use Immutator, the
programmer selects a class and then chooses the Generate

Immutable Class option from the refactoring menu. Before
applying the changes, Immutator gives the programmer the

option to preview them in a before-and-after pane. Then
Immutator makes the class deeply immutable.

Our algorithm transforms the target class in-place. How-
ever, the tool makes a copy of the target class and then
transforms this copy. This provides the programmer with
two variants of the same class: a mutable and an immutable
one. The programmer decides where it makes sense to use
one over the other.

However, the programmer can not use the deeply im-
mutable version if the class is to be used in client code
that relies on structural sharing of mutable state. Consider
a Graph that contains mutable Node objects. The seman-
tics of the Graph class ensure that several nodes can share
the same successor node. If the programmer made Graph

immutable, Immutator would change mutator methods like
addEdge(n1,n2) to clone the entering nodes, thus transform-
ing the graph into a tree. On the other hand, structural shar-
ing of immutable objects does not contradict with deep-copy
immutable semantics. If the Graph contained immutable Node

objects, then Immutator would not clone Node objects, thus
preserving the sharing semantics of the original class.

Before transforming the target class, Immutator checks that
it meets four preconditions, and reports failed preconditions
to the programmer. The programmer can decide to ignore
the warnings and proceed, or cancel the operation, fix the
root cause of the warnings and then re-run Immutator.



3.1 Transformation Preconditions
Immutator checks the following preconditions:

Precondition #1 The target class can only have super-
classes that do not have any mutable state.

Precondition #2 The target class can not have subclasses
as these can add mutable state to the target objects.

Precondition #3 Mutator methods in the target class must
have a void return type and must not override meth-
ods in superclasses. This is because Immutator rewrites
mutator methods to return new instances of the target
class and must use the return type for this. Methods
in Java can only return one value and it is not allowed
to change the return type when overriding a method.

Precondition #4 Objects that enter or escape the tran-
sitive state of the target class must either already im-
plement clone, or the source code of their classes must
be available so that a clone method can be added.

While these preconditions may seem restrictive, we believe
that value classes are likely to meet them. For example, soft-
ware that follows the command-query separation principle
(methods either perform an operation, or return a value) will
not have mutators with non-void return types, thus meeting
precondition 3. Furthermore, preconditions 1 and 2 are lim-
itations of the current implementation, and not inherent to
the approach. We leave for future work to refactor a whole
class hierarchy.

4. TRANSFORMATIONS
This section describes the transformations that Immutator

applies to the target class. We will use the motivating ex-
ample introduced in Fig. 1 to illustrate the transformations.

Make fields and class final First, Immutator makes
all the fields of the class final. Final fields in Java can
only be initialized once, in constructors or field initializers.
Immutator also makes the target class final. This prevents it
from being extended with subclasses that add mutable state.

Generate constructors Immutator adds two new con-
structors (line 5 and 10). The first constructor is the default
constructor and it does not take any arguments. This con-
structor initializes each field to their initializer value in the
original class or to the default value if they had none. The
second constructor is a full constructor. It takes one initial-
ization argument for each field, and is private as it is only
used internally to create instances.

4.1 Convert Mutators into Factory Methods
Since the fields are final, methods can not assign to them.

Immutator converts mutator methods into factory methods
that create and return new objects with updated state.

We call a method a mutator if it (i) assigns to a field in
the transitive state of a target class instance, or (ii) invokes
a method that is a mutator method.

Convert direct mutators Setters are a common type
of mutator in object-oriented programs. Lines 19–21 on the
right-hand side of Fig. 1 show the transformation of setRa-

dius to a factory method. Immutator changes (i) the return
type to the type of the target class, and (ii) the method body
to construct and return a new object, created using the full
constructor. The constructor argument that is assigned to

the r field is set to the right-hand-side of the assignment
expression. The arguments for the other fields (e.g., c) are
copied from the current object. Thus, the factory method
returns a new object where the r field has the new value,
while the other fields remain unchanged.

However, not all mutators are simple setters. Some con-
tain multiple statements, while others mutate fields indi-
rectly by calling other mutators. moveBy, on line 34–38,
demonstrates both of these traits. It contains two state-
ments, and it mutates c indirectly by calling moveTo.

The right-hand side shows how Immutator transforms moveBy
into a factory method. It introduces a new local reference,
called _this, to act as a placeholder for Java’s built-in this

reference. After _this is defined at the first mutation, Immu-

tator replaces every explicit and implicit this with _this.
Furthermore, for every statement that calls a mutator,

Immutator assigns the return value of the method (which is
now a factory method) back to _this. Thus, the rest of the
method sees and operates on the object constructed by the
factory method. Finally, the _this reference is returned.

An interesting property of this technique is that it shifts
the mutations from the target object to the _this reference.
That is, instead of mutating the object pointed to by this, it
mutates the state of _this. Ideally, Immutator would reassign
back to this, but in Java the built-in this reference can not
be assigned to. Therefore, Immutator replaces it with the
mutable place-holder _this.

Convert transitive mutators Consider the moveTo(int,

int) method on line 27–32. Although this method never
assigns to the c field, it still mutates c’s transitive state
through the setLocation method. Immutator notices that the
method setLocation does not belong to the target class, but
to java.awt.Point in the GUI library. Therefore, Immutator

can not rewrite setLocation into a factory method.
As before, Immutator creates the _this reference, and re-

turns it at the end of the method. Furthermore, Immutator

clones c, so that the mutation does not affect the original
object referenced by this. The cloned c is passed as an ar-
gument to the new Circle, which is assigned to _this. Since
_this.c now refers to a clone of the original this.c, we can
allow the mutation through setLocation.

4.2 Clone the Entering and Escaping state
Another way the transitive state of the target object can

be mutated is if client code gets hold of a reference to an
object in its internal state, and then mutates it outside of
the target class. This can happen in two ways: (i) through
objects that are entering the target class (e.g., Point p on
line 24), or (ii) through objects that are escaping the target
class (e.g., c on line 41).

An object enters the target class if it is visible from client
code, and is assigned to a field in the transitive state of
the target class. For example, the client code could call
moveTo(Point) and then mutate the point through the re-
tained reference.

We define a target class escape as an escape from any of its
methods, including constructors. An escape from a method
means that an object that is transitively reachable through
a field of the target class is visible to the client code after the
method returns. For example, on line 41, the object pointed
to by c escapes through the return statement, and can then
be mutated by client code. Escapes can also occur through
parameters and static fields



If an object enters or escapes then current or future client
code may perform any operations on it, and Immutator must
conservatively assume that it will be mutated.

Immutator handles entering and escaping objects by insert-
ing a call to the clone method to perform a deep copy of the
object in question, as seen on the right-hand side of line 24
and 41. However, if the entering or escaping object is itself
immutable, Immutator does not clone it. The current imple-
mentation considers the following classes to be immutable:
the target class, String, Java primitive wrapper classes (e.g.,
Integer), and classes annotated with @Immutable.

When Immutator needs to use a clone method that does
not exist, it generates a clone stub and reports this to the
user, who must implement the stub.

Immutator avoids excessive cloning. For example, it could
have inserted a clone call in the private constructor on line
11, but this would have caused unnecessary cloning. Instead,
Immutator calls clone sparsely, at the location where objects
enter or escape, or where the target class is transitively mu-
tated (e.g., on line 30).

Moreover, Immutator ensures some structural sharing [11],
by not adding calls to clone objects that enter from an-
other instance of the same class. For example, when the
transformed setRadius method is called, a new instance of
ImmutableCircle is created (line 20 on the right-hand side).
However, only the r field is mutated, while the c field (the
center) remains the same. Since the old circle will not mu-
tate the center, and since the center is not visible from the
outside, the new circle does not have to clone it. The result
is that the two circles share a part of their state.

5. PROGRAM ANALYSIS
In the previous section we discussed the transformations

to make an existing class immutable. In order to perform
these transformations Immutator first analyzes the source code
to establish preconditions and to collect information for the
transformation phase.

Immutator does not perform a whole-program analysis, but
only analyses the target class and methods invoked from it.
Thus, the analysis is fast and can be used interactively.

At the heart of Immutator are two analyses. The first de-
tects mutating methods so that these can be converted to
factory methods. The second detects objects that enter or
escape the target class so that they can be cloned. Both
analyses work on a representation generated from byte code,
and can therefore analyze third-party library code.

5.1 Analysis Data Structures
Immutator creates several data structures that are neces-

sary for the program analyses. It constructs both of these
data structures using the WALA analysis library [23] as a
starting point.

The first data structure is a call graph (CG) starting from
every non-private method of the target class. The call graph
is used to find mutators as well as entering/escaping objects.
For each node in the callgraph Immutator also constructs a
control flow graph (CFG) that is used later to find transitive
mutations and to build a points-to graph.

In addition to the control-flow structures, Immutator builds
a points-to graph (PTG). Points-to analysis establishes which
pointers (or references in Java terminology) point to which
storage locations. We model the heap storage locations as
object allocation sites.

p

this

c

Circle

center

Circle:2 circle

c Point

Point

client moveTo

1 public void c l i e n t ( ) {
2 C i r c l e c i r c l e = new Ci r c l e ( ) ;
3 Point cente r = new Point (5 , 5 ) ;
4 c i r c l e .moveTo( cente r ) ;
5 }

6 public c lass Ci r c l e {
7 // . . .
8 public void moveTo( Point p) {
9 this . c = p ;

10 }
11 }

Figure 2: An example points-to graph

An example of the points-to graphs that Immutator cre-
ate is illustrated using a simple client program in Fig. 2.
The graph contains two types of nodes: references, depicted
graphically as ellipses, and heap-allocated objects depicted
as rectangles. The explicit formal arguments of a method
are placed on the border of its bounding box. Directed edges
connect references to the objects they point to. For example,
the object created on line 2 is represented by the rectangle
Circle:2, and the reference it is assigned to on the same line
is represented by the circle ellipse. This object has a field
c, which is constructed in the field initializer of class Circle.
References are connected to their objects by directed edges.
The points-to graph only captures relations between refer-
ences and objects, and does not include scalar primitives.

Notice that the assignment on line 9 creates an alias be-
tween the references c and p. This is represented in the
points-to graph as a dashed arrow, and is called a deferred
edge. A deferred edge means that c can point to any objects
that p can point to. We also use deferred edges to represent
the relations between formal and actual arguments since
Java is a pass-by-value language where actuals are copied
into the formals.

Immutator constructs this points-to graph using an inclusion-
based (Andersen-style) points-to analysis. The analysis is
partly flow-sensitive with respect to local variables as it is
computed from an SSA representation of the source code. It
is also context-insensitive since it does not take the calling
context into account.

Note that Immutator constructs additional nodes that do
not exist in the program when they are needed to complete a
method summary. One such example is the Circle allocation
site and its c field in the moveTo method. When Immutator

creates the summary for moveTo, the this reference is not
connected to any allocation sites. Therefore, Immutator con-
structs additional object and field nodes in order to add the
deferred edge that represents the assignment of p to c.

5.2 Detecting Transitive Mutators
The goal of this analysis is to find the methods that are

mutating the transitive state of the target object, either di-
rectly or indirectly by calling another mutator method.

Fig. 3 shows the pseudocode of the algorithm for detecting
mutator methods. The algorithm takes as input the set M of



Input: M ← Set of Methods in CG,
MTC ← Methods in Target Class,
PTG← Points-to Graph

Output: MUT // Set of mutator methods

// Step 1: Find the transitive state of the target class
TARG← ∪m∈MTC(transitiveClosure(this, PTG))

// Step 2: Find transitive mutators
for each m in M do

for each fieldAssignments <o.f = expr> do
if o can reach TARG through deferred edges in
PTG then

MUT ←MUT ∪m

// Step 3: Find indirect mutators
for each m in M , in reverse topological order do

for each m′ in callees(m) do
if m′ ∈MUT then

MUT ←MUT ∪m

Figure 3: Detecting transitive and indirect mutators

methods in the call graph, the set MTC of methods declared
in the target class, and the points-to graph presented in
Section 5.1. The output of the algorithm is a set MUT of
mutator methods.

In Step 1, the algorithm finds the objects and fields that
represent the transitive state of the target class. To do so,
the algorithm computes the transitive closure of the this

references of the target class, i.e, all nodes in the points-to
graph reachable from this. These nodes, called TARG, are
the set union of all nodes reachable from the this reference
in target class methods.

In Step 2, the algorithm finds all transitive mutating meth-
ods. These include mutators inside and outside (e.g., setLo-
cation(), called on line 30) the target class. The algorithm
visits every field assignment instruction in all the target class
methods, as well as methods invoked from the target class.
For each assignment it checks whether the left-hand side of
the assignment is a reference node that may point to one of
the objects in the transitive state of the target class. If it
can, this means that the instruction assigns to the transi-
tive state of the target class, and the algorithm marks the
method as a direct mutator.

In Step 3, the algorithm propagates mutation summaries
from direct mutators backwards through the call graph. If
method m calls m′ and m′ is a mutator, then m becomes
a mutator too. To do this, the analysis visits, in reverse
topological order (post-order), the methods in the call graph
and merges the mutation summaries of the callees with the
summaries of the callers.

5.3 Detecting Escaping and Entering Objects
The goal of this analysis is to find mutable objects that

enter or escape the target class. These objects can be mu-
tated by a client, thus mutating the transitive state of the
target class. Therefore, the analysis finds and clones them.

The algorithm detects entering/escaping objects that are
mutable and assigned/fetched to/from the transitive state
of the target class.

Fig. 4 shows the pseudocode of the algorithm for detecting
entering or escaping objects. The algorithm takes as input

Input: API ← Set of non-private methods in Target Class
MTC ← Methods in Target Class,
PTG← Points-to Graph,

Output: ESC // Set of Escaping Objects
ENT // Set of Entering Objects

// Step 1: Find the transitive state of the target class
TARG← ∪m∈MTC(transitiveClosure(this, PTG))

// Step 2: Find the transitive closure of the outside nodes
OUT ← ∪m∈API(transitiveClosure(actuals, PTG)

∪ transitiveClosure(returns, PTG)
∪ transitiveClosure(statics, PTG))

// Step 3: Find the escaping objects
for each deferred edge e ∈ PTG do

if (e.source ∈ OUT ) && (e.sink ∈ TARG) then
ESC ← ESC ∪ e.sink

// Step 4: Find the entering objects
for each deferred edge e ∈ PTG do

if (e.source ∈ TARG) && (e.sink ∈ OUT ) then
ENT ← ENT ∪ e.source

Figure 4: Detecting entering and escaping objects

the points-to graph presented in Section 5.1. The output of
the algorithm are two sets: ENT containing objects that en-
ter the target class, and ESC containing objects that escape
the target class.

In Step 1, the algorithm finds the nodes that form the
transitive state of the target class. The transitive state,
denoted by the TARG set, is the transitive closure of the
this reference of every method in the target class.

In Step 2, the algorithm finds the nodes that are outside
of the target class, but that interface with it. Since these
are the nodes through which client code interacts with the
target class, they are also the nodes that objects can enter
or escape through. We call these nodes the boundary nodes,
as they are at the boundary of the target class.

The boundary nodes are:

• actual arguments passed to non-private (API) methods

• references returned from non-private methods

• static reference fields.

The algorithm computes the transitive closure of bound-
ary nodes, and labels the resulting set OUT .

In Step 3, the algorithm finds the escaping objects. Es-
caping objects are the objects in the transitive state of the
target class that can be seen from methods outside the tar-
get class. To find these objects, the algorithm visits all the
deferred edges that start in OUT and end in TARG. We
are only interested in the edges that end in TARG, because
we only care about escaping objects in the transitive state
of the target class. For such edges, the algorithm adds the
sink target node to the ESC set.

Fig. 5(a) shows an example of an escaping object. It shows
the points-to graph for the getLocation method, with an
additional node representing the return statement. We color
the transitive state of the target class (which is the transitive
closure of this) with orange. We then color the outside
nodes with blue. In this example, the only boundary node is
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this

c

Circle
public Point getLocat ion ( ) {

return c ;
}

(a) Example of an object escaping from getLocation

p

this

c

Circle

Point

actual public void moveTo( Point p) {
this . c = p ;

}

(b) Example of an object entering through moveTo

Figure 5: Detecting escaping and entering objects

the return node, and its transitive closure includes c. Notice
that c is colored with both blue and orange. This means c

escapes because it can be seen from the outside (it is blue),
and it is part of the transitive state of the class (it is orange).

In Step 4, the algorithm finds the entering objects. En-
tering objects are objects that are visible outside the target
class methods, and that can be seen from the target class.
To find these objects, the algorithm visits all the deferred
edges that start in TARG and end in OUT . We only visit
edges that start in TARG, because we only care about the
entering objects that are assigned to a field in the transitive
state of the target class. For such edges, the algorithm adds
the sink outside node to the ENT set.

Fig. 5(b) shows an example of an entering object. It shows
the points-to graph for the moveTo method. As before, the
transitive state of the target class is colored orange, and
the transitive closure of the boundary nodes (i.e., the actual
argument) are blue. The actual parameter is a part of the
transitive state of the target class (it is orange), and it can
be seen from the outside (it is blue). Therefore, objects may
enter through it.

For pedagogical reasons, we chose simple examples to il-
lustrate escaping and entering objects. In the codes illus-
trated in Fig. 5(a) and 5(b), it is very easy to spot the en-
tering/escaping objects. However, in many cases they are
more difficult to find, especially if objects enter or escape
through containers, or escape through parameters. Section 7
shows an example of a state object escaping through an it-
erator container. The open-source developer overlooked this
escaping object, but Immutator correctly finds it.

6. DISCUSSION
There are cases when the programmer wants only partial

immutability. For example, the programmer wants some
fields to be excluded from the immutable state of the class
(e.g., a Logger field), or some fields to be shallowly im-
mutable. Or the programmer does not want to clone the en-
tering/escaping objects (e.g., for performance reasons), but
rather to document contracts. These are trivial extensions
to Immutator and require no additional analysis.

Currently, Immutator handles most of the complexities of
an object-oriented language like Java: arrays, aliases, poly-
morphic methods, and generics. It models arrays as an al-
location site with just one field, which represents all the
array elements. Although this abstraction does not allow
Immutator to distinguish between array elements, it allows
Immutator to detect objects that enter or escape through ar-
rays. Immutator disambiguates polymorphic method calls by
computing the dynamic type of the receiver object using the
results of the points-to analysis described in Section 5.1. Im-

mutator also preserves the generic types during the rewriting.

Limitations Since Immutator analyzes bytecode, it cor-
rectly handles calls to third-party libraries. However, if the
program invokes native code, Immutator can not analyze it.
Also, like any practical refactoring tool, Immutator does not
handle uses of dynamic class loaders or reflection.

Future work We plan to solve the usage problem, i.e.,
updating the client code to use the transformed class in an
immutable fashion.

Additionally, we will relax some of the constrains imposed
by the current preconditions, to allow Immutator to transform
more classes. For example, we could completely eliminate
the requirement that the target class has no superclass/sub-
class (P1/P2), by allowing Immutator to transform a whole
class inheritance hierarchy at once. Similarly, we could elim-
inate the requirement that mutators have a void return type
(P3). Immutator could, for example, return a Pair object
which encapsulates both the old return type, and the newly
created object. Immutator would then have to change the
callers of such methods to fetch the appropriate fields.

7. EVALUATION
To evaluate the usefulness of Immutator we answer the fol-

lowing research questions:

Q1: How applicable is Immutator?

Q2: Is Immutator safer than manual transformations?

Q3: Does it make the programmer more productive?

All these questions address the higher level question “Is
Immutator useful?” from different angles. Applicability mea-
sures how many classes in real-world programs can be di-
rectly transformed, i.e., they meet the preconditions. Cor-
rectness ensures that the runtime behavior is not modified
by the transformation. Productivity measures whether au-
tomation saves programmer time.

7.1 Methodology
We use a combination of three empirical methods, one

controlled experiment and two case studies, that comple-
ment each other. The experiment allows us to quantify the
programmer time and programmer errors, while the case
studies give more confidence that the proposed algorithm
and experiment findings generalize to real-world situations.

Case Study #1 (CS1) We ran Immutator on all classes
in 3 open-source projects, a total of 346 concrete classes.
Table 1 shows the projects that we used: Jutil Coal 0.3,
jpaul 2.5.1 and Apache Commons Collections 3.2.1.

We do not suggest that every class in a project should be
immutable. That is not for a tool to decide. Rather, we
evaluate how well the transformation works over all classes



proj. SLOC tests classes analyzed edits/ time/ passed preconditons failed preconditons
methods class2 class classes mutator enter escape classes P1 P2 P3 P4

jutil 4,605 70 70 3,397 43 2.09 s 32 39 12 19 34 3 16 10 24
jpaul 5,661 42 54 2,471 33 2.16 s 21 25 11 2 26 4 11 9 9
apache 26,323 13,009 222 12,857 50 2.44 s 57 29 16 13 156 24 90 64 63
Total 36,589 13,122 346 18,725 45 2.33 s 110 93 39 34 216 31 117 83 96

Table 1: Results of applying Immutator to 3 open-source projects

without imposing a selection criteria that could limit the
generalization of the findings.

Case Study #2 (CS2) We also conducted case stud-
ies of how open-source programmers implement immutabil-
ity. To find existing immutable classes in real-world projects
we used two code search engines: krugle (www.krugle.org),
and Google (www.google.com/codesearch). We searched
for Java classes whose name contains the word ‘Immutable’
and classes whose documentation contained the word ‘Im-
mutable’. These are classes that are likely to be immutable,
and the documentation of these classes confirmed that the
developers intended them to be immutable. We also searched
for classes implementing an Immutable interface, a convention
used in some open-source projects. In cases when we found
errors in their immutable classes, we contacted the develop-
ers to ask for clarification.

Controlled Experiment We asked 6 experienced pro-
grammers (with an average of 7 years of Java programming)
to manually transform for immutability 8 classes from the
JHotDraw 5.3 framework. JHotDraw is an open-source 2D
graphics framework for structured drawing editors.

We gave each programmer a 1-hour tutorial on making
classes immutable, and then we asked them to transform
one or two JHotDraw classes and report the time. We used
classes from the Figure class hierarchy that made sense to be-
come immutable. Since the Figure classes are part of a deep
class inheritance hierarchy, we told the participants to treat
the target class as if it was the only class in the hierarchy, i.e.,
to change only the target class. No programmer got a class
larger than 400 LOC. We also used Immutator to transform
the same classes (we relaxed the first two preconditions),
and we compared the results against a golden-standard.

To answer the applicability question, we wrote a statistics
tool that applied the transformation to all classes in each
project from CS1. For classes that did not pass all precon-
ditions, the tool collected the failed preconditions. Since we
ran Immutator in automatic mode, it only applied the trans-
formation to classes that passed all preconditions. In inter-
active mode, Immutator could have transformed more classes,
after the programmer addressed failed preconditions.

To answer the correctness question, we ran extensive test
suites before and after all transformations from CS1. We
only used projects that had extensive tests to help us confirm
that the transformation did not break the systems. We also
carefully inspected a few classes that we chose randomly.

To be able to run existing test suites, we wrote a tool
that generates a mutable adapter between the immutable
classes and the tests. The adapter has the same interface
as the original class, but contains a reference to an instance
of the immutable class. When a test calls a mutator, the
adapter invokes the corresponding factory method of the
immutable instance, and assigns the returned object to the
reference. Our generated adapters were not adequate for
9% of the case study classes, due to not supporting static
instance fields. Additionally, due to exceptions raised by

our current implementation, we failed to analyze 20 of the
classes in CS1. These were excluded from the reported data.

Furthermore, to compare correctness of manual versus
tool-assisted transformation, we carefully analyzed the im-
mutable classes that were produced manually in the second
case study (CS2) and in the controlled experiment.

To answer the productivity question, we used Immutator to
transform all the classes in Table 1 that met the precondi-
tions. For each class, we report the number of methods that
Immutator analyzed, as well as the number of source changes.
We further broke this down into the total number of lines
that had edits, the number of mutators that had to be con-
verted to factory methods, and the number of entering or
escaping objects that had to be cloned. We also report the
time Immutator spent analyzing and transforming the code.
For the controlled experiment, we asked each programmer
to report the time spent to analyze and transform a class.

7.2 Results
To be useful, Immutator must be applicable, correct, and

must increase programmer productivity.

7.2.1 Applicability
Table 1 shows that 33.74% of the classes in CS1 meet the

preconditions without requiring any modification from the
programmer. Out of the classes that failed preconditions,
most are due to superclasses containing mutable state (P2),
entering/escaping objects (P4), and mutators with non-void
return values (P3).

However, keep in mind that a programer would not select
all classes, but rather the ones that provide benefit. We
hypothesize that such classes are more likely to meet the
preconditions. Even in cases when classes do not meet all
preconditions, Immutator enables the programmer to identify
issues with the push of a button.

7.2.2 Correctness
For each project in CS1, we ran the full test suite before

and after the transformations. The transformations did not
cause any new failures.

Table 2 shows that even expert programmers make er-
rors when creating immutable classes. The last set of three
columns show how many entering or escaping objects the
open-source programmers forgot to clone, and how many
mutating methods they still left in the immutable class.

We confirmed with the open-source developers that our
findings indicate genuine immutability errors in their code,
and that developers meant those classes to be deeply im-
mutable. Most agreed that their implementation choice was
an incorrect design decision or was made for the sake of per-
formance. Furthermore, the JDigraph developers took our
patch and fixed the errors.

Table 3 shows the data for the controlled experiment. Pro-

2Does not include the adapter class

www.krugle.org
www.google.com/codesearch


project immutable class programmer errors

mutator enter escape

JDigraph ImmutableBag - 1 -

FastNodeDigraph - 2 -

HashDigraph - 2 -

ArrayGrid2D - 2 -

MapGrid2D - 2 -

WALA ImmutableByteArray - 1 -

ImmutableStack - 2 3

j.u.c.3 ImmutableEntry - 2 2

Guava ImmutableEntry - - 2

peaberry ImmutableAttribute - - 1

Spring ImmutableFlow-

AttributeMapper 2 2 -

Table 2: Immutability errors in open-source projects

grammers made errors similar with the ones in CS2. How-
ever, the density of errors was higher: 6.37 errors/class. The
manual inspection of the immutable classes generated by our
prototype implementation revealed 4 bugs. None of these
were inherent to the algorithm.

7.2.3 Productivity
Table 1 shows that Immutator saved the programmer from

editing 45 lines of code per target class on average. More
important, many of these changes are non-trivial: they re-
quire analyzing 57 methods in context to find transitive mu-
tations, entering and escaping objects. In contrast, when
using Immutator, the programmer only has to initiate the
transformation. On average, Immutator analyzes and trans-
forms a class in 2.33 seconds using a Macbook Pro 4.1 with
a 2.4 GHz Core 2 Duo CPU. Compared to the time taken
to manually transform a class in the controlled experiment,
27 minutes, this is an improvement of almost 700x.

8. RELATED WORK
Specifying and checking immutability There is a

large body of work in the area of specifying or checking im-
mutability [16,22,26].

Pechtchanski and Sarkar [16] present a framework for spec-
ifying immutability constraints along three dimensions: life-
time (e.g., the whole lifetime of an object, or only during a
method call), reachability (e.g., shallow or deep immutabil-
ity), and context. Immutator enforces deep immutability for
the whole lifetime of an object, on all method contexts.

Tschantz and Ernst [22] present Javari, a type-system ex-
tension to Java for specifying reference immutability. Ref-
erence immutability means that an object can not be mu-
tated through a particular reference, though the object could
be mutated through other references. In contrast, object
immutability specifies that an object can not be mutated
through any reference, even if other instances of the same
class can be. Zibin et al. [26] build upon the Javari work
and present IGJ that allows both reference and object im-
mutability to be specified. Class immutability specifies that
no instance of an immutable class may be mutated. Refer-
ence immutability is more flexible, but weaker than object
immutability, which in turn is weaker than class immutabil-
ity. Immutator enforces class immutability.

3java.util.collections

JHotDraw SLOC time programmer errors

class [min] mutator escape enter

EllipseFigure 104 17 1 - 5

ArrowTip 145 15 - - -

ColorEntry 97 16 - - 1

ImageFigure 154 20 2 - 4

LineConnection 344 53 2 1 2

FigureAttributes 204 24 1 1 1

TextFigure 381 45 7 2 6

PertFigure 311 30 10 - 5

Total 1740 220 23 4 24

Table 3: Results of the controlled experiment

These systems are very useful to document the intended
usage and to detect violations of the immutability constraints.
But they leave to the programmer the tedious task of remov-
ing the mutable access. In contrast, Immutator performs the
tedious task of getting rid of mutable access, by converting
mutators into factory method, and cloning the state that
would otherwise escape.

Supporting program analyses Components of our
program analyses have previously been published: detecting
side-effect free methods [1,18–20] and escape analysis [4,24].
Our analyses detect side effects and escapes only on state
that is reachable from the target class.

Side-effect analysis [1, 18–20] uses inter-procedural alias
analysis and dataflow propagation algorithms to compute
the side effects of functions. There are two major differ-
ences between these algorithms and Immutator’s analysis for
detecting mutators. First, the search scope is different. Our
algorithm detects side-effects to variables that are part of the
transitive state of the target class, whereas previous work
determines all side-effects (including side effects to method
arguments that do not belong to the transitive state). Con-
sider the method drawFrame from TextFigure in JHotDraw:

public void drawFrame ( Graphics g ) {
g . setFont ( fFont ) ;
g . s e tCo lo r ( ( Color ) ge tAt t r ibute ( ”TextColor ” ) ) ;
g . drawString ( fText , . . . ) ;

}

The previous algorithms would determine that drawFrame

is a mutator method, because it has side effects on the graph-
ics device argument, g.

However, if Immutator transforms TextFigure then drawFrame

will not mutate the transitive state of the target class, thus
eliminating the need to clone the graphics device.

Second, our algorithm distinguishes between (i) methods
in the target class that directly or indirectly assign to the
fields of the target class and (ii) methods outside the target
class (potentially in libraries) that do not assign to target
class’ fields, but mutate these fields transitively. Immuta-

tor converts the former mutators into factory methods, and
rewrites the calls to the latter methods into calls dispatched
to a copy of this (e.g., see the this receiver in Fig. 1, lines
28–29). This enables Immutator to correctly transform code
that invokes library methods.

Escape analysis [4,24] determines if an object escapes the
current context. So far, the primary applications of this
analysis has been to determine whether (i) an object allo-
cated inside a function does not escape and thus can be
allocated on the stack, and (ii) an object is only accessed



by a single thread, thus any synchronizations on that object
can be removed. There are three major differences between
these algorithms and Immutator’s escape analysis. First, our
algorithm detects escaped objects that belong to the tran-
sitive state of the target class. Second, our algorithm is
designed to be used in an interactive environment. Thus,
it does not perform an expensive whole program analysis,
but only analyzes the boundary methods of the target class.
Third, in addition to escaping objects, our algorithm also
detects entering objects.

Refactoring The earliest refactoring research focused on
achieving behavior-preservation through the use of pre- and
post-conditions [15] and program dependence graphs [10].
Traditionally, refactoring tools have been used to improve
the design of sequential programs. The more recent work has
expanded the area with new usages. We have used refactor-
ing [5, 6] to retrofit parallelism into sequential applications
via concurrent libraries. In the same spirit, Wloka et al. [25]
present a refactoring for replacing global state with thread
local state. Schäfer et al. [21] present Relocker, a refactoring
tool that lets programmers replace usages of Java built-in
locks with more flexible locks. Our transformations for class
immutability makes code easier to reason about and enables
parallelism by prohibiting changes to shared state.

9. CONCLUSIONS
Programmers use immutability to simplify sequential, par-

allel, and distributed programming. Although some classes
are designed from the beginning to be immutable, other
classes are retrofitted with immutability. Transforming mu-
table to immutable classes is tedious and error-prone.

Our tool, Immutator, automates the analysis and transfor-
mations required to make a class immutable. Experiments
and case studies of manual transformations, as well as run-
ning Immutator on 346 open-source classes, show that Immuta-

tor is useful. It is applicable in more than 33% of the stud-
ied classes. It is safer than manual transformations which
introduced between 2 and 6 errors/class. It can save the pro-
grammer significant work (analyzing 57 methods and editing
45 lines) and time (27 minutes) per transformed class.
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