
Looplets: A Language for Structured Coiteration
Willow Ahrens

MIT CSAIL
Cambridge, MA, USA
willow.ahrens@mit.edu

Daniel Donenfeld
MIT CSAIL

Cambridge, MA, USA
danielbd@mit.edu

Fredrik Kjolstad
Stanford University
Stanford, CA, USA

kjolstad@cs.stanford.edu

Saman Amarasinghe
MIT CSAIL

Cambridge, MA, USA
saman@csail.mit.edu

Abstract
Real world arrays often contain underlying structure, such as
sparsity, runs of repeated values, or symmetry. Specializing
for structure yields significant speedups. But automatically
generating efficient code for structured data is challenging,
especially when arrays with different structure interact. We
show how to abstract over array structures so that the com-
piler can generate code to coiterate over any combination
of them. Our technique enables new array formats (such as
1DVBL for irregular clustered sparsity), new iteration strate-
gies (such as galloping intersections), and new operations
over structured data (such as concatenation or convolution).

CCS Concepts: • Software and its engineering→ Source
code generation; Domain specific languages; • Mathemat-
ics of computing→ Mathematical software performance.

Keywords: Coiteration, Array, Tensor, Compressed, Sparse

ACM Reference Format:
Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman
Amarasinghe. 2023. Looplets: A Language for Structured Coitera-
tion. In Proceedings of the 21st ACM/IEEE International Symposium
on Code Generation and Optimization (CGO ’23), February 25 –March
1, 2023, Montréal, QC, Canada. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3579990.3580020

1 Introduction
Arrays (or tensors) are a powerful abstraction for represent-
ing collections of data. From scientific simulations to neural
networks to image processing, array programming frame-
works like NumPy, TensorFlow, and Halide help users pro-
ductively process large amounts of data [2, 20, 45]. These
complex frameworks are built on one of the simplest data
structures in computer science: the dense array. A dense ar-
ray stores every element contiguously in memory. Iterating
through a dense array is as easy as incrementing a pointer
in a loop.

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0101-6/23/02.
https://doi.org/10.1145/3579990.3580020

We can greatly improve on the efficiency of dense array
processing by taking advantage of the underlying regular
or irregular structure often present in real-world data. Data
may be sparse (mostly zero), symmetric (mirrored along the
diagonal), or contain repeated values. When data is sparse,
we need only store the nonzeros. When data is symmetric,
we need only store one half. When data contains runs of
repeated values, we need only store one value from each run.
With current memory sizes, many datasets are impossible
to store without these optimizations. Storage improvements
lead to performance improvements when we can use mathe-
matical properties to avoid redundant work. For example, in
a sparse sum, we need only add the nonzero values.
In these representations, iteration is more complicated

than dense iteration. For example, to efficiently iterate over
sparse arrays, we must skip over the zeros. Several sparse
formats are used in practice for different situations, such as
sorted lists, hash tables, or bytemaps, and special implemen-
tations must be developed for each. The iteration problem
compounds when we need to combine sparse arrays that
are stored in different formats. If we wish to multiply two
sparse arrays pointwise, we must determine which nonzero
locations are shared. The coiteration logic is a performance
bottleneck, so we need custom implementations for the com-
binatorial space of potential input formats.

The influential TACO framework [29] compiles specialized
code for all combinations of dense and sparse arrays. Users
can also add custom sparse formats by implementing TACO’s
interface for iterators over nonzeros [12].

However, an iterator-over-nonzeros interface is not suffi-
cient to express the full variety of underlying structures and
iteration strategies encountered in real-world sparse arrays.
Sparsity patterns may contain irregular clusters or blocks,
or even regular shapes like banded or triangular matrices.
When nonzeros are clustered, it is better to process the dense
regions with simple dense code, rather than e.g. checking if
each dense nonzero overlaps with nonzeros in other sparse
arrays. TACO can model a dimension as entirely sparse (us-
ing the nonzero iterator interface) or entirely dense (using
a random access interface), but cannot iterate over a single
dimension as a combination of sparse and dense regions.
TACO can artificially add dimensions to construct formats
like BCSR (fixed-size blocks) or DIA (fixed number of diag-
onals), but these constructions cannot be composed unless
both arrays share the same dimensional transform.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

41

https://orcid.org/0000-0002-4963-0869
https://orcid.org/0000-0001-8557-0296
https://orcid.org/0000-0002-2267-903X
https://orcid.org/0000-0002-7231-7643
https://doi.org/10.1145/3579990.3580020
https://doi.org/10.1145/3579990.3580020
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579990.3580020&domain=pdf&date_stamp=2023-02-22

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Amarasinghe

Wemust also move beyond mere irregular sparsity, to also
express structure. Code that iterates over nonzeros does not
sufficiently accelerate computations over symmetric arrays
or arrays with repeated values, since these may not contain
any zeros at all. Therefore, a myriad of new compilers or
compiler passes have been developed in separate attempts to
support different structural specializations, such as ragged
arrays [18], symmetry [48], or run-length encoding [15].
These extensions represent significant implementation effort,
but do not compose with one another.
In this paper, we show how to abstract over these itera-

tion strategies using the concept of iterator protocols. An
iterator protocol describes the interface that a structured
array format must implement to be used in some particular
implementation of an array operation. Protocols are abstract
representations of structure within a sequence of values. The
protocol declares which functions a format should imple-
ment, and how to interpret the data those functions pro-
duce. For example, the iterator-over-nonzeros protocol asks
formats to implement iterators over coordinates and corre-
sponding values, and declares that we should interpret the
format as a vector which is zero except at the coordinates.

In short, dense array programming is comparatively easy
to implement because it only needs to support one protocol:
unstructured random access. The TACO compiler supports
two protocols, random access and an iterator-over-nonzeros.
Ragged arrays require a protocol for dense regions followed
by zeros [18], and TACO’s run-length encoding extension
supported a protocol for sequences of runs. The systems do
not compose because each system hard-coded support for
its respective protocol. As applications for array compilers
become more diverse, we must support an ever-increasing
number of protocols and the interactions between them.
Hand-writing code for each situation is infeasible.
We introduce a language for iterator protocols. We ex-

press iterators over arrays using basic functional units called
Looplets that expose underlying array structure in a cus-
tomizable way. We then devise a compiler that can auto-
matically generate efficient code for combinations of differ-
ent input protocols and array expressions. We integrate the
Looplet language into a new array compiler called Finch,
which accelerates the design space exploration of sparse and
structured loop nests. Finch can compile expressions over
any combination of structured formats, protocols, mathe-
matical simplifications, and index modifiers. Finch lowers
expressions progressively, allowing us to express structural
simplifications (like zero-annihilation from sparsity) through
straightforward and extensible rewrite rules.
A composable protocol language makes it possible to ex-

press far more data representations than prior work [12] and,
critically, to mix them freely in expressions. Protocols can be
easily developed for new formats, such as the PackBITS for-
mat, which intersperses runs of repeated values with dense
regions of unstructured data and is standardized as part of

the TIFF image format [1]. Different protocols can also be de-
veloped for the same format. For example, a list of nonzeros
might be better traversed by skipping ahead with a binary
search. If there are two lists, we might want one to lead and
the other to follow, or perhaps allow each to skip ahead to
nonzeros in the other, a “galloping” intersection strategy [6].
Galloping is used to implement worst-case-optimal joins in
databases [43, 55]. Finally, protocols can be modified to im-
plement more complex operations. We can express padding
operations by nesting an existing protocol within another,
or affine indexing by shifting an existing protocol. These
protocol modifications enable operations like concatenation
or convolution over structured formats.

We make the following contributions:

• We propose the use of access protocols to abstract over
array iteration strategies and introduce the Looplet
language to express access protocols.

• We describe a compiler for the Looplet language that
combines multiple local protocols into one efficient
loop nest that implements an array operation.

• We show how a surprising range of iteration strategies,
formats and array operations can be expressed and
composed using Looplets.

To evaluate our contributions, we benchmark Finch on a
diverse set of operations; sparse matrix sparse vector multi-
ply, triangle counting, sparse input convolution, alpha blend-
ing, and all-pairs image similarity. We compare to OpenCV
and TACO, and our evaluation shows that Finch is competi-
tive on the kernels that each supports, while using less code.
Finch uses 7223 lines excluding comments, versus 34805 in
TACO or 900998 in OpenCV. Different protocol perform bet-
ter in different cases, emphasizing the need for flexibility in
iteration strategies. In some cases, Finch obtains order-of-
magnitude speedups over the state of the art.

2 Motivating Example
When there is only one input to an operation, such as map or
reduce, it is possible to hand-write specialized implementa-
tions for each potential input data structure. However, when
there are multiple inputs and multiple operations, we cannot
easily hand-write for all the combinations. Even when both
inputs are sparse, there is no universally efficient protocol.
Here, we demonstrate how the iterator-over-nonzeros inter-
face of systems like TACO [29] cannot express the appropri-
ate coiteration over unstructured and clustered sparsity.
Consider the dot product kernel, which combines two

vectors by summing their pairwise product. The dot product
can be written as𝐶 =

∑
𝑖 𝐴𝑖𝐵𝑖 . When both vectors are dense,

we compute it with a single for-loop. When both vectors are
sparse, we might consider using TACO’s two-finger merge
template, which represents both vectors as iterators-over-
nonzeros, and merges the nonzero coordinates to find shared

42

Looplets: A Language for Structured Coiteration CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

nonzeros. However, this is not a good fit when one or both
of the vectors are clustered.

Perhaps the quintessential sparse format is the sparse list
format (referred to as “compressed” by Kjolstad et. al. [29]),
which is a good fit for unpredictable sparsity patterns. This
format stores the locations of only nonzero values using a
sorted list, which is a natural fit for an iterator-over-nonzeros
interface. However, when nonzeros are clustered they benefit
from more specialized formats. For instance, banded matri-
ces are popular in scientific computing and contain dense
regions of nonzeros centered around the diagonal. To repre-
sent such structures, we can introduce a sparse band format
that stores a single, variably wide block of contiguous nonze-
ros. The left columns of Figures 1a–1c express coiteration
between these sparsity structures in the compressed iterator-
over-nonzeros model, and the result of inlining our interface
definitions into a two-finger-merge dot-product template.
The resulting code iterates over the nonzero values of both
lists, stopping once either is exhausted.
The right columns of Figures 1a–1c express coiteration

in the Looplets model. Pipeline, phase, stepper, spike, run
and lookup are all Looplet types that will be explained in
Section 3, but they describe the semi-structured sparsity of
the data in Figure 1c. The increased expressiveness of the
model lets us inform the compiler that there are large zero
regions before and after the dense band. This lets us skip
ahead in the sparse list to the start of the dense band region.
Additionally, our protocol declares that the dense band can
be randomly accessed. This allows us to skip the elements
in the band that are zero in the list. These two optimizations
can have asymptotic effects, which are visualized for our
example vectors in Figure 1c.

3 Looplet Language
Looplets are abstract descriptions of regular or irregular pat-
terns in a sequence of values, together with the code needed
to iterate over the sequence. Looplets represent sequences
using hierarchical descriptions of the values within each
region or subregion. Regions are specified by their absolute
starting and ending index, referred to together as an extent.
Looplets are lowered by a compiler. Values can be static

(i.e., known at compile time), or dynamic (i.e., known only
at runtime). Looplets represent the full sequence abstractly,
even if all of the values are not stored explicitly. For example,
a run looplet represents a sequence of many of the same
value, usually stored once. A lookup looplet represents an
arbitrary sequence as a function of the index. While this
function is often an array access, it could also be a function
call, like 𝑓 (𝑖) = 𝑠𝑖𝑛(𝜋𝑖/7).
Looplets are defined with respect to the extent of the

target region that we wish to represent (usually the range of
an enclosing loop). The spike looplet represents a sequence
of values that are all the same, followed by a single scalar

getnnz(A::SpList) = length(A.idx)
getidx(A::SpList, p) = A.idx[p]
getval(A::SpList, p) = A.val[p]

unfurl(A::SpList) =
Pipeline(Phase(Stepper(Spike(...))),

Phase(Run(0)))↩→

getnnz(A::SpBand) = A.stop-A.start
getidx(A::SpBand, p) = A.start+p-1
getval(A::SpBand, p) = A.val[p]

unfurl(A::SpBand) =
Pipeline(Phase(Run(0)),

Phase(Lookup(...)), Phase(Run(0)))↩→

(a) Comparing iteration interfaces. On left, an iterator-over-
nonzeros implementation of a sorted coordinate list and our banded
format. On right, equivalent Looplet declarations (simplified from
Figures 3d and 3f) that expose more structure to the compiler.
function dot(A::SpList, B::SpBand)
C = 0
pA = 1
PA = length(A.idx) #getnnz(A)
pB = 1
PB = B.stop-B.start #getnnz(B)
while pA <= PA && pB <= PB
iA = A.idx[pA] #getidx(A, pA)
iB = B.start+pB-1 #getidx(B, pB)
i = min(iA, iB)
if i == iA && i == iB
vA = A.val[pA] #getval(A, pA)
vB = B.val[pB] #getval(B, pB)
C += vA * vB

end
pA += iA == i
pB += iB == i

end
return C

end

function dot(A::SpList, B::SpBand)
C = 0
i = B.start
phase_stop = min(B.stop, A.idx[end])
if phase_stop >= i
pA = search(A.idx, i)
iA = A.idx[pA]
while i <= phase_stop

if iA <= phase_stop
i = iA
vA = A.val[pA]
vB = B.val[(i - B.start) + 1]
C += vA * vB
pA += 1
iA = A.idx[pA]

else
i = phase_stop

end
i += 1

end
end

end

(b) The resulting dot-product code from iterator-over-nonzeros
(left) and Looplets (right). On left, a (straightforward) Julia trans-
lation of TACO output, where we have replaced the TACO com-
pressed level functions with that of our hypothetical banded matrix
format. On right, simplified Finch output.

0 1.9 0 3.0 0 0 2.7 0 5.5 0 0
()

A =

0 0 0 3.7 4.7 9.2 1.5 8.7 0 0 0
()

B =

0 1.9 0 3.0 0 0 2.7 0 5.5 0 0
()

A =

0 0 0 3.7 4.7 9.2 1.5 8.7 0 0 0
()

B =

(c) An example execution of each algorithm. The nonzero locations
processed by each dot product inner loop are shown in red, unpro-
cessed nonzeros are shown in black. The iterator-over-nonzeros
code (left) processes nonzeros from both lists till one is exhausted.
The looplet code (right) skips to the start of the block, then ran-
domly accesses it, thus improving asymptotic efficiency.

Figure 1. Coiteration comparison between an iterator-over-
nonzeros approach (left) and our Looplets approach (right)
to coiteration over a sparse list and sparse band format. The
list format holds many scattered nonzeros, while the band
format holds a single dense nonzero region. Elsewhere we
describe our VBL format that holds multiple bands.

value at the end of the target region. Frequently, we will
want to represent a subregion, or truncation, of a looplet.
Many looplets are self similar. A run looplet, for example, can
represent any subregion of itself. Other looplets are specific
to the target region. For example, a truncation of a spike that
excludes the last element produces a run.

43

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Amarasinghe

Some looplets represent the composition of other looplets.
The switch looplet represents a choice between different
looplets under different conditions. The pipeline looplet
represents a sequence of a few different looplets, one after
the other. The stepper looplet represents a sequence of an
unbounded number of identical looplets. These looplets de-
scribe not only their sublooplets, but also the conditions and
extents in which sublooplet apply.

A looplet nest can introduce and manipulate its own run-
time variables in the generated code. For example, the code
to advance a stepper to the next looplet in a sequence might
increment some counter variable. A switch looplet might
use that variable in its condition. Looplets are executed in
ascending index order, but some regions may be skipped.
Therefore, variables introduced by a looplet are only guaran-
teed to be visible to child and descendant looplets, but not
to looplets subsequently executed in the program.

Precise descriptions of all the looplets are given in Figure 2.
Each looplet is described together with the functions that
it must implement, which return either sublooplets or code
that modifies the state. Because looplets are defined with
respect to the region that contains them, they need only
declare internal boundaries that affect child looplets.

4 Formats
Array structures are diverse, and so are approaches for

array storage. Prior approaches, such as TACO level for-
mats [12] and the FiberTree abstraction [52], popularized
hierarchical taxonomies for array structure. These abstrac-
tions decompose multidimensional arrays mode-by-mode
into trees, where each mode is a level of the tree, and each
node within a level is a slice. For example, the popular CSR
matrix format stores a an outer dense level of rows, where
each inner level is a sparse list of nonzero columns.
It is helpful to view an array 𝐴 as a function mapping

several indices to elements. If we were to curry our array
function, then a partial application corresponds to a slice
of the array. For example, if 𝐴 were a 3-dimensional, then
𝐴(𝑖1, 𝑖2, 𝑖3) = 𝐴(𝑖1) (𝑖2) (𝑖3) and 𝐴(𝑖1) = 𝐴[𝑖1, :, :]. In this pa-
per, we define a fiber as an array function mapping a single
index to a subfiber. Fibers can be thought of as abstract
vectors of subfibers. The level storage is a datastructure
responsible for storing all the fibers within a dimension, each
distinguished by an integer position.
Looplets make it easy to efficiently support new level

formats. The array tree abstraction decomposes multidimen-
sional array formats into unidimensional ones. Looplets fur-
ther decompose the remaining unidimensional structure. The
format developer can use Looplets to describe the structure
of a single fiber within a level. In Section 6, we show how
the looplet nest is then automatically merged with other
nests and lowered to efficient code. We refer to the process
of constructing a looplet nest for a fiber as unfurling.

Lookup(body(idx)). An arbitrary sequence
of scalars where the element at index idx can
be computed as body(idx).

f(i) ... f(j)

i:j

Run(body). A sequence of the same repeated
scalar body.

x ... x

i:j

Spike(body, tail). A sequence of the same
repeated scalar body, followed by some scalar
tail at the end.

z ... z x

i:j-1 j

Pipeline(Phase(stride, body(ext)), ...). The
concatenation of a few different child looplets in a sequence. Each
phase declares its corresponding extent, ending at stride, and the
child body(ext) for some target subextent.

A B

sub_i:sub_j

i:k k + 1:j

Stepper(seek(idx), stride, body(ext), next). The
repeated application of the same child looplet body(ext), each
child ending at stride. Steppers are evaluated iteratively, so next
advances state to the next looplet and seek(idx) initializes
variables for a starting index idx.

A_1 A_2 ... A_n

sub_i:sub_j

i:k k + 1:j

Jumper(seek(idx), stride, body(ext), next). Like a
stepper, but ext may be wider than stride, spanning multiple
children, enabling accelerated iteration (e.g. galloping).

A_1 A_2 ... A_n

sub_i:sub_j

i:k k + 1:j

Shift(delta, body). A wrap-
per that shifts all declared extents
of body by delta. Shifting is nec-
essary because extents are abso-
lute, rather than relative.

A

i:jdelta

Switch(Case(cond, body), ...).
Represents the first child looplet
body for which cond evaluates to
true at runtime.

if cond A

else B

i:j

Figure 2. The looplets considered in this paper, described
and displayed with a target extent of i:j.

By defining just a few level formats, we can express a
wide variety of structured array storage formats and proto-
cols. Figure 3 gives some examples of matrix structures and
corresponding level formats and protocols that allow us to
efficiently traverse them.
Our approach relaxes the constraints of prior work on

array structure. Rather than force array datastructures to

44

Looplets: A Language for Structured Coiteration CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

1.3 0 0 0 0 0 0 0 0 0 0

8.3 7.0 0 0 0 0 0 0 0 0 0

9.3 4.6 3.8 0 0 0 0 0 0 0 0

4.9 2.3 7.8 6.6 0 0 0 0 0 0 0

6.1 6.6 7.0 9.8 5.9 0 0 0 0 0 0

5.5 7.8 5.1 9.5 5.6 8.4 0 0 0 0 0

3.1 3.7 6.5 5.9 8.3 5.5 8.6 0 0 0 0

8.6 1.1 9.8 1.3 7.2 9.4 7.9 8.9 0 0 0

8.4 3.2 8.0 1.9 4.1 7.3 0.4 4.0 9.0 0 0

0.6 1.4 7.1 2.3 7.6 7.2 7.7 3.1 7.2 2.2 0

2.2 8.5 8.6 8.4 9.8 8.2 9.1 6.3 1.1 4.0 4.0

©«

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
... 6.1 6.6 7.0 9.8 5.9val

6.1 6.6 7.0 9.8 5.9 0 0 0 0 0 0
()

Lookup Run

Pipeline

offset = i*(i-1)/2
Pipeline(

Phase(
stride = i,
body = Lookup(
body(j) = val[offset+j])),

Phase(
body = Run(0)))

(a) Lower Triangular

0 0 5.9 4.7 0.3 0 0 2.9 2.3 0 0

6.0 0 0 0 4.2 7.5 5.6 0 0 0 0

3.0 0 0 3.2 0 0 0 5.9 5.1 1.4 2.1

0 0 0 0 0 0 6.5 5.9 6.3 0 0

0 0 2.7 5.0 0.9 0 0 1.4 2.3 0 0

0 0 0 5.3 0 0 0 0 0 0 0

0 0 0.9 3.9 8.2 0 0 0.1 4.4 4.1 0

8.7 0 0 0 0 0 0 0 0 0 3.1

7.9 0 2.3 0 0 9.0 9.1 2.5 1.1 0.8 8.6

0 0 0.7 6.7 5.2 3.2 0 0 0 0 0

1.8 0 0 3.6 0 4.1 0.7 7.7 3.1 0 3.7

0 0 0 0 0 0 6.2 6.4 6.5 0 0

©«

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

... 2.7 5.0 0.9 1.4 2.3val

... 5 9idx

... 19 22 24ofs

... 9 11pos

0 0 2.7 5.0 0.9 0 0 1.4 2.3 0 0
()

Run Lookup Run Lookup Run

Pipeline Pipeline

Stepper

Pipeline

Pipeline(
Phase(
stride = idx[pos[i+1]-1],
body = begin
p = pos[i]
Stepper(
seek(j) = (p = search(idx, j)),
stride = idx[p],
body = Pipeline(
Phase(
stride =

idx[p]-(ofs[p+1]-ofs[p]),↩→
body = Run(0)),

Phase(
body = Lookup(
body(j) =
val[ofs[p+1]+j-idx[p]]))),

next = p += 1))
Phase(
body = Run(0)))

(b) Clustered Matrix, VBL Format

0.0 9.4 6.0 9.6 6.0 5.5 5.9 6.1 4.6 3.2 3.3

9.4 9.3 6.0 5.1 4.4 0.3 1.9 6.1 6.2 3.8 0.3

6.0 6.0 9.6 8.6 2.1 8.8 0.3 7.0 2.3 7.5 7.1

9.6 5.1 8.6 9.3 4.9 4.5 4.1 3.3 7.6 9.1 7.4

6.0 4.4 2.1 4.9 7.1 7.2 3.9 2.1 4.0 4.9 2.7

5.5 0.3 8.8 4.5 7.2 0.4 4.9 2.3 4.7 2.0 8.9

5.9 1.9 0.3 4.1 3.9 4.9 2.3 3.9 6.6 4.2 7.9

6.1 6.1 7.0 3.3 2.1 2.3 3.9 0.7 4.1 1.4 3.7

4.6 6.2 2.3 7.6 4.0 4.7 6.6 4.1 6.3 5.0 3.2

3.2 3.8 7.5 9.1 4.9 2.0 4.2 1.4 5.0 5.8 5.1

3.3 0.3 7.1 7.4 2.7 8.9 7.9 3.7 3.2 5.1 3.4

©«

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
... 5.9 1.9 0.3 4.1 3.9 4.9 2.3val

5.9 1.9 0.3 4.1 3.9 4.9 2.3 3.9 6.6 4.2 7.9
()

Lookup Lookup

Pipeline

offset = i*(i-1)/2
Pipeline(
Phase(
stride = i,
body = Lookup(
body(j) = val[offset+j])),

Phase(
body = Lookup(
body(j) = val[j*(j-1)/2+i])))

(c) Symmetric

0 0 1.1 0 8.1 0 2.2 8.4 9.1 0 0

0 0 3.4 0 6.8 5.1 0 0 0 0 0

0 7.0 0 0 0 0 1.2 0 0 0 0

0 5.3 6.6 0 0 0 0 0 0 0 5.3

0 0 2.1 0 0 1.9 7.5 0 0 0 0.9

0 1.9 0 3.0 2.7 0 0 0 5.5 0 0

1.4 0 3.3 0 0 0 0 0 2.3 5.3 0

0 0 2.1 0 0 0 0 0 0 0 5.0

1.5 0 0 0 0 0 4.8 0 0 0 0

0 0 5.8 5.3 0 0 0 0 8.3 0 0

0 1.8 0 4.8 3.1 0 0 1.5 7.4 0 0

©«

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

... 1.9 3.0 2.7 5.5val

... 2 4 5 9idx

... 18 23pos

0 1.9 0 3.0 2.7 0 0 0 5.5 0 0
()
Run Run Run Run

Spike Spike Spike Spike

Stepper

Pipeline

Pipeline(
Phase(
stride = idx[pos[i+1]-1],
body = begin
p = pos[i]
Stepper(
seek(j) = (p = search(idx, j)),
stride = idx[p],
body = Spike(
body = Run(0)
tail = val[p]),

next = p += 1)
end)

Phase(
body = Run(0)))

(d) Uniform Sparsity, List Format

3.5 2.5 8.6 0.4 0.8 8.9 4.0 2.3 9.8 0 0

2.7 0 0 0 0 0 0 0 0 0 0

7.0 1.8 0 0 0 0 0 0 0 0 0

0.9 0.6 4.1 7.3 9.0 8.9 8.9 0.9 1.6 0 0

5.2 4.6 4.3 5.0 9.8 3.6 2.7 0.4 0 0 0

5.0 0.5 0 0 0 0 0 0 0 0 0

7.2 2.9 0 0 0 0 0 0 0 0 0

0.7 3.2 2.5 2.3 4.7 8.2 8.9 8.7 3.9 7.0 8.1

2.0 6.8 0.9 1.1 3.7 5.0 6.5 4.0 2.6 0 0

0.9 5.1 5.9 7.4 0.1 5.5 0 0 0 0 0

7.8 9.9 4.1 1.9 1.4 3.3 3.4 8.3 4.1 0 0

©«

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

... 5.2 4.6 4.3 5.0 9.8 3.6 2.7 0.4val

... 22 30pos

5.2 4.6 4.3 5.0 9.8 3.6 2.7 0.4 0 0 0
()

Lookup Run

Pipeline

Pipeline(
Phase(
stride = pos[i+1]-pos[i],
body = Lookup(
body(j) = val[pos[i]+j-1])),

Phase(
body = Run(0)))

(e) Ragged

0.4 3.8 0 0 0 0 0 0 0 0 0

4.1 1.1 1.7 3.2 0 0 0 0 0 0 0

0 1.9 7.8 6.9 0 0 0 0 0 0 0

0 9.0 2.4 9.4 9.9 4.6 0 0 0 0 0

0 0 0 2.6 8.2 5.7 0 0 0 0 0

0 0 0 3.7 4.7 9.2 1.5 8.7 0 0 0

0 0 0 0 0 7.0 1.4 6.9 0 0 0

0 0 0 0 0 8.1 3.9 5.2 8.5 0 0

0 0 0 0 0 0 0 2.3 6.3 0 0

0 0 0 0 0 0 0 0 0 2.8 5.7

0 0 0 0 0 0 0 0 0 8.1 8.0

©«

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

... 3.7 4.7 9.2 1.5 8.7val

... 4start

... 18 23pos

0 0 0 3.7 4.7 9.2 1.5 8.7 0 0 0
()

Run Lookup Run

Pipeline

band = pos[i + 1] - pos[i]
offset = pos[i] - start[i]
Pipeline(
Phase(
stride = start[i] - 1
body = Run(0)),

Phase(
stride = start[i] + band - 1,
body = Lookup(
body(j) = vals[offset + j])),

Phase(
body = Run(0)))

(f) Banded Matrix, Band Format

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 2 1 1

1 1 1 1 1 1 2 2 2 2 1

3 3 3 1 1 1 2 2 5 2 4

5 2 2 3 3 3 3 2 2 2 1

1 5 2 2 2 2 2 3 2 2 1

1 1 5 5 2 2 5 5 2 1 1

1 2 2 5 5 5 5 2 2 1 1

2 2 2 2 2 2 2 2 1 1 1

2 2 2 2 2 4 1 4 1 1 1

1 1 1 1 1 4 1 4 1 1 1

©«

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

... 3 1 2 5 2 4val

... 3 6 8 9 10 11idx

... 8 14pos

3 3 3 1 1 1 2 2 5 2 4
()

Run Run Run Run Run Run

Stepper

p = pos[i]
Stepper(
seek(j) = (p = search(idx, j)),
stride = idx[p],
body = Run(
body = val[p]),

next = p += 1)

(g) Image with repeated values.
Run-Length Format.

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 2 1 1

1 1 1 1 1 1 2 2 2 2 1

3 3 3 1 1 1 2 2 5 2 4

5 2 2 3 3 3 3 2 2 2 1

1 5 2 2 2 2 2 3 2 2 1

1 1 5 5 2 2 5 5 2 1 1

1 2 2 5 5 5 5 2 2 1 1

2 2 2 2 2 2 2 2 1 1 1

2 2 2 2 2 4 1 4 1 1 1

1 1 1 1 1 4 1 4 1 1 1

©«

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

... 3 1 2 5 2 4val

... 3 6 8 −11idx

... 8 12pos

3 3 3 1 1 1 2 2 5 2 4
()

Run Run Run Lookup

Switch Switch Switch Switch

Stepper

s = 0
p = pos[i]
Stepper(
seek(j) = (
p = search(abs(idx), j)),

stride = idx[p],
body = Switch(
Case(
cond = idx[p] > 0,
body = Run(
body = vals[p]))

Case(
body = Lookup(
body(j) = vals[p + j - s])))

next = s = abs(idx[p]); p += 1;)

(h) Image with repeated values.
PackBITS Format.

Figure 3. A variety of example structures, corresponding level formats, and protocols expressed as looplet nests. Matrices are
row major, and outer levels are dense. The row under consideration is highlighted in red.

45

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Amarasinghe

express a set of points that are nonzero, our format can
express any structured function from an index or indices to
a position or value. The hierarchical level format approach
is enabled by the Looplets language, but not required. Other
approaches might also be implemented with Looplets.

5 Extended Concrete Index Notation
Concrete index notation (CIN) is a high level language for
array computations. CIN was first introduced as part of the
TACO compiler [28]. It was later extended to include multi
statements (to express multiple outputs) [30] and protocol
declarations (to customize the access protocol independently
from the array format) [3].

5.1 Concrete Index Notation Background
Our new grammar for CIN is shown in Figure 4. At the heart
of CIN is the assignment statement, which represents an
update to a single array element. We can either increment or
overwrite the element by a pointwise expression composed
of functions over other array access expressions. Arrays are
accessed by index variables. The forall statement repeats the
assignment statements for each value of an index variable.
The where statement lets us compute an array in one state-
ment, then use it in the other. The producer (right hand)
side computes arrays for the consumer (left hand) side to
use. This gives rise to the notion of array results. Each state-
ment in concrete index notation returns one or more results.
The result of an assignment is the array being modified, and
the result of a forall is the result of its body. The result of
a where statement is the result of its consumer. Result ar-
rays are initialized as soon as they enter the scope, and are
finalized when they leave scope. Thus, arrays are initialized
in the outermost where statement which contains them on
the right hand side, or at the start of the program. The multi
statement allows us to compute multiple outputs at once,
and it combines the results of its constituent statements.

5.2 Concrete Index Notation Extensions
We extend CIN with additional constructs to express looplets.
We allow arrays to be accessed by any expression, not just
indices. Critically, index expressions allow us to specify dif-
ferent protocols for accessing index variables. Instead of
returning a fixed looplet nest, users can specify the kind of
nest that should be used. For example, a user might choose
between random-access, iterating over nonzeros, or gallop-
ing over some index variable. Index expressions also enable
index modifiers, which affect the protocol of the index
they modify. Users might declare that they should iterate
over a slice of an array, or perhaps shift the index by some
expression. If an index expression is opaque to the compiler,
it represents a random access. The sieve statement guards
another statement and only executes it when the condition is
true. We support random access by introducing a loop over

expr := literal
index
call
access
proto
(expr)
$(value)

literal := 42
3.14
...

index := i
j
...

call := expr + expr
expr * expr
expr(expr...)

access := value[expr...]

proto := expr::value

stmt := assign
forall
_where
multi
sieve
pass
(stmt)
$(value)

assign := ACCESS = expr
ACCESS += expr
ACCESS *= expr
ACCESS <<value>>= expr

extent := expr : expr
forall := @∀ index stmt

@∀ index ∈ extent stmt

_where := (stmt) where (stmt)

multi := @multi stmt...

sieve := @sieve expr stmt

pass := @pass value...

Figure 4. Our extended concrete index notation grammar.
Here, value is used for values (like arrays) in the scope sur-
rounding the program, and $(value) is an escape sequence.
The token @finch is used to denote a CIN program execution
within a larger piece of code.

all possible access locations and using a sieve to only exe-
cute the single iteration corresponding to the target location.
During lowering, our code generator may need to introduce
pass statements, which are no-ops that do nothing other
than remember which array outputs they aren’t writing to.
Pass statements return their arrays unmodified.

6 Lowering
This section describes our looplet merging and lowering
algorithm. Our compiler, Finch, lowers concrete index nota-
tion recursively, node by node, emitting code until a forall is
reached. To lower a forall, Finch unfurls all arrays accessed
at the outermost level by the forall index, transforming them
into looplets. In our progressive lowering approach, each
type of looplet has a corresponding compiler pass that is capa-
ble of evaluating it. Many lowerers produce subexpressions
that are lowered recursively. We lower whichever looplets
we can at each step. Unlowered looplets are truncated or
ignored for later stages, as applicable.

6.1 Looplet Lowerers
Since looplets are defined with respect to a forall statement,
its index, and its bounds, each looplet lowerer operates on a
forall loop expression. The looplets themselves are treated
as vectors being accessed in the body of the forall loop.

Lookups. The simplest way to evaluate a forall loop is to
execute each iteration in turn, and evaluate the body of the
loop after binding the index value. If all of the looplets in the
body are lookups, dynamic values, or scalars with respect
to the loop index, Finch emits a for-loop and lower the body
after substituting a dynamic index value:
A = Lookup(body(j) = j^2)
B = Lookup(body(j) = data[j])
@finch(@∀ i ∈ 1:I (C[] += 2 * x * A[i] * B[i]))
⇓
for i_1 = 1:I
@finch(C[] += 2 * x * $(i_1^2) * $(data[i_1]))

end

46

Looplets: A Language for Structured Coiteration CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

+(a..., +(b...), c...) => +(a..., b..., c...),
+(a..., 0, b...) => +(a..., b...),
a[i...] += 0 => @pass(a),
a - b => a + (- b),
- (- a) => a,
*(a..., *(b...), c...) => *(a..., b..., c...),
*(a..., 1, b...) => @i *(a..., b...),
*(a..., 0, b...) => 0,
(*)(a..., - b, c...) => -(*(a..., $b, c...)),

@sieve true $a => a,
@sieve false $a => pass(getresults(a)...),
@loop $i @pass(a...) => pass(a...),
$a where @pass() => a,

or(a..., false, b...) => @i or(a..., b...),
or(a..., true, b...) => true,
@loop i ∈ start:stop A[j] <<min>>= b => if j != i A[j] <<min>> = b end
@loop i ∈ start:stop A[j] += b => if j != i A[j] += b*(stop-start) end

Figure 5. A selection of rewrite rules used in Finch to de-
clare mathematical properties enabling sparse and structural
optimizations. Users can add custom rules for the kinds of
computations in their domain.

Runs and Rewriting. The run lowerer unwraps runs
into their scalar values and simplifies the resulting program.
For example, sparse computing relies on the fact that 𝑥 ·0 = 0.
When one array is zero within a region, implementations
can ignore arrays it multiplies.

Because Finch lowers separate looplet expressions for each
subregion, simplifying optimizations can be expressed as
rewrite rules. Using rewrite rules to express optimizations
broadens the accessibility of our system. Users might ex-
press arbitrary rewrites for the interaction between custom
value types and custom functions, such as semirings or be-
yond [14, 26, 40]. Figure 5 gives some examples of the kinds of
rules we use. In addition to simple rules like zero-annihilation
or constant propagation, some rules might operate on state-
ments within the expression. For example, Finch recognizes
that adding a constant 𝑐 to the same output 𝑛 times is equiv-
alent to adding 𝑐 ·𝑛, saving𝑂 (𝑛) work. Removing loops over
constants is useful for optimizing operations over run-length-
encoded data. Users can even write their own simplifying
compiler passes over intermediate expressions.
A = Run(body = x)
B = Run(body = 0)
@finch(@∀ i ∈ start:stop (C[] += A[i] * B[i]))
⇓
@finch(@∀ i ∈ start:stop (C[] += 0 * $x))
⇓
@finch(@∀ i ∈ start:stop @pass C)
⇓
@finch(@pass C)

Spikes. Given an expression with spikes, Finch constructs
two subexpressions, one for the spike bodies (runs of variable
length) and one for the tails (of length one). Finch truncates
other looplets to match each case. When a loop has length
one, Finch skips the loop and just evaluates the body once.
Recall that spike looplets depend on the target region.

Thus, when spikes are truncated by other looplet passes,
they produce a cases statement depending on whether the
new target range includes the final tail element. If that last

element is included, the subrange still represents a spike.
Otherwise, it is simplified to a run:
A = Spike(body = 0, tail(j) = Adata[j])
B = Spike(body = 0, tail(j) = Bdata[j])
@finch(@∀ i ∈ start:stop (C[] += A[i] * B[i]))
⇓
@finch(@∀ i ∈ start:(stop - 1) (C[] += 0 * 0)) #body region
@finch((C[] += $(Adata[stop]) * $(Bdata[stop]))) #tail region
⇓
@finch((C[] += $(Adata[stop]) * $(Bdata[stop])))

Switches. The switch lowerer produces a separate expres-
sion for each combination of cases from the switch looplets
in an expression. Each combination is lowered separately
and emitted in an if-else-block:
A = Switch(
Case(cond = :(x > 1), body = 1),
Case(cond = :(true), body = 2),

)
B = Switch(
Case(cond = :(y > 1), body = 3),
Case(cond = :(true), body = 4),

)
@finch(@∀ i ∈ 1:I (C[] += A[i] * B[i]))
⇓
if x > 1 && y > 1
@finch(@∀ i ∈ 1:I (C[] += 1 * 3))

elseif x > 1
@finch(@∀ i ∈ 1:I (C[] += 1 * 4))

elseif y > 1
@finch(@∀ i ∈ 1:I (C[] += 2 * 3))

else
@finch(@∀ i ∈ 1:I (C[] += 2 * 4))

end

Pipelines. The pipeline lowerer produces a separate ex-
pression for each combination of phases from the pipeline
looplets in an expression. The ranges of all the phases in each
combination are intersected, and other looplets are truncated
to match. Note that many of these combinations will have an
empty intersection. Consider the graph where phase combi-
nations are nodes and edges represent transitions from one
phase to the next within a pipeline. If we lower combina-
tions of phases in an order that linearizes the graph, then
earlier phase combinations will always be executed before
later ones. Since each edge advances a pipeline, the graph is
acyclic and we can construct such an order:
A = Pipeline(
Phase(stride = s_A, body = 1),
Phase(body = 2),

)
B = Pipeline(
Phase(stride = s_B, body = 3),
Phase(body = 4),

)
@finch(@∀ i ∈ start:stop (C[] += A[i] * B[i]))
⇓
@finch(@∀ i ∈ start:min(s_A, s_B, stop) (C[] += 1 * 3))
@finch(@∀ i ∈ max(start, s_B):min(s_A, stop) (C[] += 1 * 4))
@finch(@∀ i ∈ max(start, s_A):min(s_B, stop) (C[] += 2 * 3))
@finch(@∀ i ∈ max(start, s_A, s_B):stop (C[] += 2 * 4))

Steppers. Steppers represent an arbitrary number of child
looplets. Finch first uses the stepper seek function to set each
stepper’s current child to intersect with the starting index
of the current target region. Finch then uses a while loop to
lower steppers, with each step evaluating as large a range as
possible without crossing any stepper’s child boundaries. At
the beginning of the loop body, Finch computes the target
region by intersecting the extent of each steppers’ current

47

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Amarasinghe

child. Then, Finch truncates the stepper children to the com-
puted region, producing the loop body expression of the step.
Finally, Finch emits the next statements from each stepper,
which are responsible for advancing the state of the child
looplet to represent the next child, if necessary.
Because the while loop maintains the current starting

index for the step, only the ending index is needed from each
stepper. This single index is the stride. The seek function
often contains a binary search, and the next function usually
increments a variable, but they can bemore general if needed:

A = Stepper(stride = idx[p], body = Run(val[p]), next = p += 1)
B = Stepper(stride = jdx[q], body = Run(wal[q]), next = q += 1)
p = q = 1
@finch(@∀ i ∈ start:stop (C[] += A[i] * B[i]))
⇓
p = q = 1
step = start
while step < stop
stride = min(idx[p], jdx[q])
@finch(@∀ i ∈ step:stride (C[] += val[p] * wal[q]))
p += stride == idx[p]
q += stride == idx[q]
step = stride

end

Jumpers. Finch lowers jumpers similarly to steppers. In-
stead of using the smallest declared extent, jumpers use the
largest. Whether the smallest or largest extent is chosen, it
will correspond to the exact range of at least one child looplet,
which can be lowered verbatim. Choosing the largest extent
enables powerful optimizations. If the largest looplet is a
run of zeros, multiple child looplets that it multiplies can be
skipped. The body of a jumper should be able to process more
than one child looplet, but usually includes a switch that spe-
cializes to the case where only a single child is needed.

As an example, a jumper over spikes usually declares the
length of the current spike but, if another spike is longer,
processes multiple spikes with a stepper. The jumper allows
us to implement leader-follower or galloping intersections:

A = Jumper(stride = idx[p], body = Run(val[p]), next = p += 1)
B = Jumper(stride = jdx[q], body = Run(wal[q]), next = q += 1)
p = q = 1
@finch(@∀ i ∈ start:stop (C[] += A[i] * B[i]))
⇓
p = q = 1
step = start
while step < stop
stride = max(idx[p], jdx[q])
if stride == idx[p] && stride == jdx[q]
@finch(@∀ i ∈ step:stride (C[] += val[p] * wal[q]))
p += 1
q += 1

elseif stride == idx[p]
@finch(@∀ i ∈ step:stride (C[] += val[p] * B[i]))
p += 1

elseif stride == idx[p]
@finch(@∀ i ∈ step:stride (C[] += A[i] * wal[q]))
q += 1

end
step = stride

end

Shifts. Shift looplets do not need a special compiler pass,
but instead shift the declared extents of their arguments
during other passes. Any looplet such as a run, scalar, or
spike which results in a terminal scalar value with respect to
the loop index can safely discard the shift looplet wrapper.

6.2 Choosing Lowerers
The same expression may contain several different kinds of
looplets, each lowered with a corresponding compiler pass.
When many different lowerers are needed, we use pairwise
tiebreaking rules. If looplets contain other looplets, the outer
looplet needs to be lowered before the looplets it contains.
Thus, we can restrict our attention to the outermost looplets
when picking a compiler pass.

A tiebreaking rule between two lowerers asserts that the
winner can handle any program (or looplets) the loser could
handle. Our tiebreaking rules also represent a heuristic for
the order in which looplets should be lowered. Finch chooses
lowering passes in the following order of descending priority:
Switch > Run > Spike > Pipeline > Jumper > Stepper > Lookup

Our reasoning is as follows: We always lower switch
looplets first in order to examine their cases. We lower runs
and spikes whenever we see them, to simplify expressions as
early as possible. Then, we lower pipelines before the loop-
ing constructs to hoist the control flow outside of loops. We
lower Jumpers before steppers to give them leader privileges.
Finally, if our expression is just lookups, there’s nothing left
to do but emit a simple for-loop. As future work, we plan to
investigate modifying the looplet lowering order by giving
some looplets customizable numeric priorities.

7 Index Modifiers
Looplets enable new functionality previously unsupported
by sparse array compilers. We show how the combination
of few simple index modifiers can be combined to imple-
ment kernels like concatenation and convolution over sparse
inputs. These index modifiers change the behavior of their
corresponding mode by wrapping or modifying the looplets
that mode would unfurl into.
As an example, consider the special windowing array

window(i, j)[k] = i+k-1 with dimension 1:j-i. A window

can be used to represent a slice of an input array. As such,
A[window(3,5)[k]] would behave like the slice A[3:5][k].
We can construct a protocol for A[window(i,j)[k]] as

Shift(delta=i,body=truncate(unfurl(A), i:j))

Letting offset(i)[j] = j-i be a special array that shifts the
dimension of the parent, we can construct the protocol
Shift(delta=i,body=unfurl(A))

Finally, we can also introduce a padding array, which al-
lows out-of-bounds access. We will use the special Julia
value missing, which is used to denote missing data and
propagates. For example, we have A[missing] = missing and
f(x, missing) = missing. The function coalesce returns it’s
first non-missing argument. When i is in bounds, we de-
fine permit[i] = i, but when i is out of bounds, we define
permit[i] = missing. Our protocol for A[permit[i]] is
Pipeline(
Phase(stride=0, Run(missing)),
Phase(stride=length(A), body=unfurl(A)),
Phase(Run(missing)))

48

Looplets: A Language for Structured Coiteration CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

(a) 𝑥 has 10% fraction nonzero. (b) 𝑥 has count of 10 nonzeros.

Figure 6. SpMSpV speedups. Nonzeros in 𝑥 are randomly
placed. The boxes display quartiles, and the whiskers and
outliers display extrema. We tested on all members of the
Harwell-Boeing collection with at least 1000 nonzeros [16].
The right plot has one VBL point above the plot area. “Finch
(Sparse)” corresponds to a standard two-finger merge.

Together, these primitives greatly expand the range of
functionality that the concrete index notation can express.
For example, we can concatenate A and B to produce C with:

@∀ i C[i] = coalesce(A[permit[i]], B[permit[offset(size(A))[i]]])

Similarly, we can express one-dimensional convolution with
a vector A and a length-3 filter F to produce B with:
@∀ i j B[i] += coalesce(A[permit[offset(2-i)[j]]], 0) * F[permit[j]]

8 Evaluation
We implemented1 Finch in Julia. All timings are theminimum
of at least 10,000 runs or 5 seconds of measurement. We
used a single processor of an Intel®Xeon®CPU E5-2680 v3
running at 2.50GHz with AVX2 instructions and 32KB of L1
cache. Both TACO and Finch used 32-bit integer indices.

8.1 SpMSpV
Many of the new functionalities introduced by Finch involve
coiteration between two structured operands. To emphasize
the effects of different coiteration strategies, we begin with
a comparison between SpMSpV approaches in Figure 6. Our
kernel was @∀ i j y_ref[i] += A[i, j] * x[j]. We iterate
over 𝑗 in the inner loop to test coiteration capabilities, repeat-
edly merging 𝑥 with every row of𝐴. We tested onmatrices in
the Harwell-Boeing collection [16]. When 𝑥 was more dense
(10% nonzeros), a leader protocol for 𝐴 performed well, as
it visited each element of 𝐴 and fast-forwarded 𝑥 . When 𝑥

was very sparse (exactly 10 nonzeros), the follower protocol
for 𝐴 performed better. A galloping approach was able to
adaptively combine the benefits of leading and following.
Our matrices are from the scientific computing domain, and
frequently contain dense blocks or bands, so we also tried
the VBL format. VBL processes the index of each band, rather
than the index of each element in each band. When 𝑥 was
very sparse, VBL led to large speedups over TACO.

1https://github.com/willow-ahrens/Finch.jl

Figure 7. Triangle counting
speedups. Boxes display quartiles,
and whiskers and outliers display
extrema. We tested on all SNAP
networks with less than 1,632,803
vertices [37].

8.2 Triangle Counting
Galloping intersections can greatly accelerate the triangle
counting kernel, where no loop ordering can avoid an in-
tersection in an inner loop and operands often have unpre-
dictable power-law sparsity distributions of nonzeros within
the rows and columns. Our kernel is
@∀ i j k C[] += A[i,j] && A[j,k] && A[k,i]

Both TACO and Finch transpose the last argument before
benchmarking the kernel. Figure 7 evaluates our naive two-
finger merge and a linear galloping intersection with respect
to TACO. Our galloping intersection sometimes resulted in
factor of 3 speedups. Our two-finger merge is not quite as fast
as TACO’s, indicating opportunities for further optimization.

8.3 Convolution
Protocols enable new sparse functionality. Figure 8 compared
our sparse convolution kernel to OpenCV. Our Finch kernel
for a masked 11x11 convolution was
@∀ i k j l C[i, k] += (A[i, k] != 0) * coalesce(A[permit[offset[6-i, j]],

permit[offset[6-k, l]]], 0) * coalesce(F[permit[j], permit[l]], 0)↩→

where we use a binary search to seek to the start of each
considered window of A. The binary search allows our kernel
to scale linearly with sparsity of the input. We consider
zero-padded arrays, but we could express other padding
schemes, such as circular padding by adding copies of 𝐴
on each side of the original. Our sparse implementation
begins to outperform the dense one at around 5% sparsity,
and results in a 7.8× speedup at 1% sparsity.

Figure 8. Dense versus sparse
convolution runtime as the
sparsity increases. 1000x1000
randomly sparse floating
point grid with dense 11x11
floating point kernel.

8.4 Alpha Blending
Finch is competitive with frameworks that move beyond
sparsity. Figure 9 compares against bothOpenCV and TACO’s
RLE extensions [15] for an alpha blending kernel
@∀ i j A[i, j] = round(UInt8, alpha * B[i, j] + beta * C[i, j])

The Omniglot dataset has 105 × 105 images with grayscale
handwritten characters from 50 different languages [35]. The
Humansketches dataset has 1111 × 1111 images with hand

49

https://github.com/willow-ahrens/Finch.jl

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Amarasinghe

drawn grayscale sketches [17]. Finch’s RLE format is compet-
itive on both datasets, though there was not enough structure
in Omniglot for an RLE approach to outperform OpenCV.
OpenCV represents each 256-valued pixel as a single byte,
and can process 32 pixels at once in an AVX register.

Figure 9. We compare
TACO’s prototype RLE exten-
sions [15] with Finch’s sparse
and RLE approaches on an
alpha blending task. Results
are the mean of 10 images.

8.5 All-Pairs Image Similarity
Finch enables unique optimizations. Figure 10 considers the
effectiveness of different strategies on an all-pairs image sim-
ilarity kernel. We consider only pairwise comparisons, rather
than batch approaches, to focus on coiteration and maintain
relevance to k-means clustering methods. The kernel is

@∀ k ij R[k] += A[k, ij]^2
@∀ k l ((O[k,l] = sqrt(R[k] + R[l] - 2 * o[])) where (@loop ij o[] += A[k, ij]

* A[l, ij]))↩→

Where A contains linearized images in each row. The MNIST
and EMNIST datasets contains 28×28 images of handwritten
digits and letters [13, 36]. Results compute distances between
256 images. Finch’s VBL format can take advantage of the
white background and clustered nonzeros in most of these
images. However, the Omniglot dataset has noisier back-
grounds which are better captured by run-length-encoding.
Additionally, when both accesses to A contain a run, we can
apply the last rule of Figure 5 to sum the whole run at once.
As with alpha blending, the images were not sparse enough
for these approaches to beat vectorized OpenCV. Future work
might investigate whether quantization induces more struc-
ture, or whether our approach can produce vectorized code.

Figure 10. Speedups on all pairs image similarity.

9 Related Work
Dense array frameworks like NumPy [20], BLAS [11], and
APL [25] greatly influenced subsequent language design.

TheHalide compiler popularized array optimization through
the use of scheduling commands, or semantics-preserving

program transformations [38, 45, 46]. Implementing a sched-
uling language in Finch is future work.
Array compilers that support irregular sparsity include

TACO [28, 29],MT1 [7, 9, 10],MLIR [8], COMET [54], Etch [34],
SIPR [44], Tiramisu [5] and CHiLL-I/E [51].
Some approaches specialize for particular sparsity pat-

terns. The OSKI library [56] includes specializations for
block sparsity, and the BLAS for triangular matrices. TACO
supports fixed-size blocks and bands [12]. TESA specializes
for bitmap or quantized sparsity [60], CORA for ragged ar-
rays [18], and FIDIL or TAICHI for spatial decompositions
[22, 24]. SparseTIR combines multiple formats [58]. Zhao et.
al. support coiteration for conjuctive * leader-follower loops
over a wide variety of formats, but do not support disjunction
+ or mutual lookahead (galloping) coiterations [59].

Most sparse frameworks support only numeric types and
the + or * operators, but TACO [21], GraphBLAS [14, 26, 40],
and Cyclops [49] support arbitrary element types and opera-
tors, making them more productive programming models.
Previously mentioned sparse compilers consider sparse

arrays as a set of nonzeros to be processed, precluding other
compression-based optimizations. Compilers like StreamIt [53]
and an extension to TACO [15] support direct computation
on losslessly compressed datasets. The BLAS and Cyclops
framework both optimize for dense symmetry [11, 50].
Many approaches model sparse computation with data-

base queries, including the Bernoulli compiler [31–33] and a
TACO autoscheduler [3]. Run-length encoding is a popular
format for column stores [41]. Queries can be modeled and
optimized as iterators [42].
In functional programming, stream fusion is a related

technique which can fuse lazily constructed streams [27, 39].
Several sparse compilers have been extended to better

adapt computation to multicore, GPU, or distributed architec-
tures [5, 47, 49, 57]. Hsu et. al. investigate sparse compilation
for spatial-dataflow accelerators [23]. Future work includes
targeting new architectures with Looplets.

10 Conclusion
Historically, specializations for the array structures in dif-
ferent fields have been handled separately. For example, sci-
entific computing explored block sparsity, image processing
explored compression techniques, and databases explored
worst-case optimal joins. Our work takes a step towards
unifying these techniques across disciplines, providing op-
portunities to transfer optimizations and better specialize to
data with heterogeneous structures.

Acknowledgments
This work was supported by NSF Grant IIP-2044424 and the
Applications Driving Architectures (ADA) Center, a JUMP
Center cosponsored by SRC and DARPA.

50

Looplets: A Language for Structured Coiteration CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

A Finch CGO 2023 Artifact
A.1 Abstract
This artifact has two scripts that build and run all of the
experiments described in the paper. We require an x86 host,
and runs Debian bullseye. The artifact is implemented as a
Julia package Finch.jl that implements the looplets described
in the paper, and a set of benchmark scripts to run the bench-
marks described in the paper. The specific runtimes mea-
sured depend on the host computer, however we expect the
relative performance between Finch, TACO and OpenCV to
roughly match the results presented in the paper.

A.2 Artifact check-list (meta-information)
• Operating System: We tested on Ubuntu 18 and Ma-
cOS 12.5, but we expect it to work on most modern
mac or Linux distributions.

• Compilation: This artifact compares to two versions
of TACO which are included as source code and built.
Additionally, we build OpenCV and several wrapper
scripts to call taco.

• Data set:We use matrices from the Harwell-Boeing
collection, graphs from the SNAP network dataset col-
lection, and several image datasets, MNIST, EMNIST,
Omniglot, and Humansketches (these are automati-
cally downloaded).

• Software: The artifact requires CMake (we used 3.10),
gcc/g++ (we used 7.5), Python (we used 2.7/3.9), and git
(we used 2.17). We used Julia 1.8.2 (which is automati-
cally downloaded). We have several Julia dependencies
whose exact versions are recorded in theManifest.toml
file (these are also automatically downloaded).

• Hardware: The artifact requires x86 processor.
• Execution: The experiments should be ran single
threaded pinned to a single socket. Turbo Boost was
turned off to avoid thermal throttling. The experiments
from the paper take 2 hours in total.

• Metrics: Execution time is reported. All timings are
the minimum of at least 10,000 runs or 5 seconds of
measurement.

• Output: The output is long format data including the
execution time stored in JSON files. We also provide
scripts to plot the data in the same format as the paper.

• How much disk space required (approximately)?
4GB

• Publicly available?: Yes
• Code licenses (if publicly available)?: The code has
been released under the MIT license.

• Archived?: After evaluation, we plan to distribute our
repository on Zenodo. All of the datasets we used are
publicly accessible with considerations for access in
perpetuity.

A.3 How Delivered
Our artifact is distributed by a direct download [4] or by
cloning the repository from GitHub. using the following
command:
git clone -b cgo23-artifact https://github.com/

willow-ahrens/FinchBenchmarks.git

Notice that we use the cgo23-artifact branch of the reposi-
tory.

A.4 Installation
1. First install CMake, gcc, g++, Python, Python3, and

git. Results were originally collected using gcc 7.5.0,
however a more modern version should work. The gcc
compiler only affects TACO and OpenCV, not Finch.

2. Run the build.sh script to download Julia 1.8.2 and
build OpenCV and TACO (this uses the included Make-
file).

A.5 Experiment Workflow
There are five experiments described in the paper in sections
9.1 through 9.5, with associated scripts to collect and analyze
results. You can run all these commands with the run.sh
script. This script runs all of the experiments and generates
the graphs shown in the paper. Running the data collection
scripts automatically downloads the appropriate datasets.
The experiments are named as follows: - all_pairs (for

all-pairs image similarity) - alpha (for alpha blending) - conv
(for sparse convolution) - smpspv (for sparse matrix sparse
vector multiply) - triangle (for triangle counting)

Each experiment has several associated scripts that are all
prefixed by it’s name. We use alpha as an example.
alpha.jl is a Julia script that runs the experiments. It can

be invoked as
julia --project=. alpha.jl RESULT_FILE
where RESULT_FILE is the name of the JSON output in

long format.
alpha.sh is a bash script that runs alpha.jl after setting

appropriate environment variables to keep dataset and julia
package downloads inside the toplevel directory. This script
produces alpha_results.json, the results.
alpha_plot.jl is a julia script that reads the results file

and generates plots. It can be invoked as
julia --project=. alpha_plot.jl RESULT_FILE

PLOT_FILE

where PLOT_FILE is the name of the output plot (with a
.png extension).
alpha_plot.sh is a bash script that runs alpha.jl after

setting similar appropriate environment variables. This script
produces alpha_plot.png, the plot of the results you just
collected.

alpha_results_reference.json contains the results we
used to generate the plots for the paper. You can point the
plotting scripts at this file to reproduce the results in the

51

https://github.com/willow-ahrens/FinchBenchmarks/tree/cgo23-artifact

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Amarasinghe

paper exactly (you could also just look at the plots in the
paper).
There are separate binaries for the OpenCV and TACO

experiments, which are called from the Julia files with the
appropriate environment variables set.

A.5.1 Short Lists. To save time, spmspv.jl and triangle.jl
run a subset of results in the paper consisting of the 5 small-
est and 5 best performing datasets. To run the full versions,
pass long as an additional final argument to these scripts.

A.6 Evaluation and Expected Result
Running the artifact as described above produces the raw
execution timing, and the relative performance plotted in
graphs which match the paper. You can verify that each ex-
periment matches it’s corresponding figure in the paper. We
also include reference results which were used to generate
the figures in the paper.

A.7 Experiment Customization
It is possible to customize the benchmark scripts to use addi-
tional datasets. The matrices used in SpMSpV and Triangle
counting are downloaded using the MatrixDepot Julia pack-
age. The main functions of these scripts can be modified to
use a different list of matrix names recognized by MatrixDe-
pot.
Finch uses the RewriteTools package to express rewrite

rules, which can be added to enable simplifications on user-
defined types. RewriteTools is an adaptation of the Symboli-
cUtils package [19].
The alpha.jl and all_pairs.jl datasets use images

downloaded using the TensorDepot Julia package. Other
datasets included in this package can be used, as long as
they are a 3-tensor with the first index used as the index
of the image, and the next two indices represent the rows
and column of the image. The permutedims function can be
used to permute the dimensions if they do not match. Other
datasets can be added to TensorDepot for easy integration
into the test harness, or they can be downloaded directly.

Finch can also be used as a standalone sparse tensor com-
piler. More details and documentation is available at https://
github.com/willow-ahrens/Finch.jl. Very briefly, any @finch
macro expression in the benchmark suite is calling the Finch
compiler and using Looplets to compile sparse kernels. The
@fiber macro sets up level formats with the abbreviations
of d for a dense level, sl for a sparse list of nonzeros, sv for
a VBL level, and rl for an RLE level.

References
[1] 2022. TIFF, Revision 6.0. https://www.loc.gov/preservation/digital/

formats/fdd/fdd000022.shtml
[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,

Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16). 265–283. https://www.usenix.org/system/files/conference/osdi16/
osdi16-abadi.pdf

[3] Peter Ahrens, Fredrik Kjolstad, and Saman Amarasinghe. 2022. Au-
toscheduling for sparse tensor algebra with an asymptotic cost model.
In Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI 2022). As-
sociation for Computing Machinery, New York, NY, USA, 269–285.
https://doi.org/10.1145/3519939.3523442

[4] Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Ama-
rasinghe. 2023. Looplets: A Language For Structured Coiteration (The
Artifact). https://doi.org/10.5281/zenodo.7499790 Language: eng.

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: a polyhe-
dral compiler for expressing fast and portable code. In Proceedings of
the 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO 2019). IEEE Press, Washington, DC, USA, 193–205.

[6] Jérémy Barbay, Alejandro López-Ortiz, Tyler Lu, and Alejandro
Salinger. 2010. An experimental investigation of set intersection algo-
rithms for text searching. ACM Journal of Experimental Algorithmics
14 (Jan. 2010), 7:3.7–7:3.24. https://doi.org/10.1145/1498698.1564507

[7] Aart J. C. Bik. 1996. Compiler Support for Sparse Matrix Computations.
Ph. D. Dissertation. LIACS, Leiden University. https://theses.liacs.nl/
1315

[8] Aart J. C. Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas
Vasilache, Bixia Zheng, and Fredrik Kjolstad. 2022. Compiler Support
for Sparse Tensor Computations in MLIR. arXiv:2202.04305 [cs] (Feb.
2022). http://arxiv.org/abs/2202.04305 arXiv: 2202.04305.

[9] Aart J. C. Bik and Harry A. G. Wijshoff. 1993. Compilation techniques
for sparse matrix computations. In Proceedings of the 7th international
conference on Supercomputing (ICS ’93). Association for Computing
Machinery, New York, NY, USA, 416–424. https://doi.org/10.1145/
165939.166023

[10] Aart J. C. Bik and Harry A. G. Wijshoff. 1994. On automatic data
structure selection and code generation for sparse computations. In
Languages and Compilers for Parallel Computing (Lecture Notes in
Computer Science), Utpal Banerjee, David Gelernter, Alex Nicolau,
and David Padua (Eds.). Springer, Berlin, Heidelberg, 57–75. https:
//doi.org/10.1007/3-540-57659-2_4

[11] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington,
R Clint Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Ham-
marling, Greg Henry, and others. 2002. An updated set of basic linear
algebra subprograms (BLAS). ACM Trans. Math. Software 28, 2 (2002),
135–151. https://doi.org/10.1145/567806.567807

[12] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. For-
mat abstraction for sparse tensor algebra compilers. Proceedings of the
ACM on Programming Languages 2, OOPSLA (Oct. 2018), 123:1–123:30.
https://doi.org/10.1145/3276493

[13] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik.
2017. EMNIST: an extension of MNIST to handwritten letters. https:
//doi.org/10.48550/arXiv.1702.05373 arXiv:1702.05373 [cs].

[14] Timothy A. Davis. 2019. Algorithm 1000: SuiteSparse:GraphBLAS:
Graph Algorithms in the Language of Sparse Linear Algebra. ACM
Trans. Math. Software 45, 4 (Dec. 2019), 44:1–44:25. https://doi.org/10.
1145/3322125

[15] Daniel Donenfeld, Stephen Chou, and Saman Amarasinghe. 2022. Uni-
fied Compilation for Lossless Compression and Sparse Computing.
In 2022 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). 205–216. https://doi.org/10.1109/CGO53902.2022.
9741282

52

https://github.com/JuliaLinearAlgebra/MatrixDepot.jl
https://github.com/JuliaLinearAlgebra/MatrixDepot.jl
https://github.com/willow-ahrens/RewriteTools.jl
https://github.com/JuliaSymbolics/SymbolicUtils.jl
https://github.com/JuliaSymbolics/SymbolicUtils.jl
https://github.com/willow-ahrens/Finch.jl
https://github.com/willow-ahrens/Finch.jl
https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1145/3519939.3523442
https://doi.org/10.5281/zenodo.7499790
https://doi.org/10.1145/1498698.1564507
https://theses.liacs.nl/1315
https://theses.liacs.nl/1315
http://arxiv.org/abs/2202.04305
https://doi.org/10.1145/165939.166023
https://doi.org/10.1145/165939.166023
https://doi.org/10.1007/3-540-57659-2_4
https://doi.org/10.1007/3-540-57659-2_4
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/3276493
https://doi.org/10.48550/arXiv.1702.05373
https://doi.org/10.48550/arXiv.1702.05373
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3322125
https://doi.org/10.1109/CGO53902.2022.9741282
https://doi.org/10.1109/CGO53902.2022.9741282

Looplets: A Language for Structured Coiteration CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

[16] I. S. Duff, Roger G. Grimes, and John G. Lewis. 1989. Sparse matrix
test problems. ACM Trans. Math. Software 15, 1 (March 1989), 1–14.
https://doi.org/10.1145/62038.62043

[17] Mathias Eitz, James Hays, and Marc Alexa. 2012. How do humans
sketch objects? ACM Transactions on Graphics 31, 4 (July 2012), 44:1–
44:10. https://doi.org/10.1145/2185520.2185540

[18] Pratik Fegade, Tianqi Chen, Phillip B. Gibbons, and Todd C. Mowry.
2021. The CoRa Tensor Compiler: Compilation for Ragged Tensors
with Minimal Padding. arXiv:2110.10221 [cs] (Oct. 2021). http://arxiv.
org/abs/2110.10221 arXiv: 2110.10221.

[19] Shashi Gowda, Yingbo Ma, Alessandro Cheli, Maja Gwóźzdź, Vi-
ral B. Shah, Alan Edelman, and Christopher Rackauckas. 2022. High-
performance symbolic-numerics via multiple dispatch. ACM Com-
munications in Computer Algebra 55, 3 (Jan. 2022), 92–96. https:
//doi.org/10.1145/3511528.3511535

[20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array
programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362.
https://doi.org/10.1038/s41586-020-2649-2 Number: 7825 Publisher:
Nature Publishing Group.

[21] RawnHenry, Olivia Hsu, Rohan Yadav, Stephen Chou, Kunle Olukotun,
Saman Amarasinghe, and Fredrik Kjolstad. 2021. Compilation of sparse
array programming models. Proceedings of the ACM on Programming
Languages 5, OOPSLA (Oct. 2021), 128:1–128:29. https://doi.org/10.
1145/3485505

[22] Paul N. Hilfinger and Philip Colella. 1989. 5. FIDIL: A Language for
Scientific Programming. In Symbolic Computation, Robert Grossman
(Ed.). Society for Industrial and Applied Mathematics, 97–138. https:
//doi.org/10.1137/1.9781611971033.ch5

[23] Olivia Hsu, Maxwell Strange, Jaeyeon Won, Ritvik Sharma, Kunle
Olukotun, Joel Emer, Mark Horowitz, and Fredrik Kjolstad. 2022. The
Sparse Abstract Machine. https://doi.org/10.48550/arXiv.2208.14610
arXiv:2208.14610 [cs].

[24] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley,
and Frédo Durand. 2019. Taichi: a language for high-performance
computation on spatially sparse data structures. ACM Transactions
on Graphics 38, 6 (Nov. 2019), 201:1–201:16. https://doi.org/10.1145/
3355089.3356506

[25] Kenneth E. Iverson. 1962. A programming language. John Wiley &
Sons, Inc., USA.

[26] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz
Franchetti, John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, Scott McMillan, Carl Yang, John D.
Owens, Marcin Zalewski, Timothy Mattson, and Jose Moreira. 2016.
Mathematical foundations of the GraphBLAS. In 2016 IEEE High
Performance Extreme Computing Conference (HPEC). 1–9. https:
//doi.org/10.1109/HPEC.2016.7761646

[27] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smarag-
dakis. 2017. Stream fusion, to completeness. ACM SIGPLAN Notices
52, 1 (Jan. 2017), 285–299. https://doi.org/10.1145/3093333.3009880

[28] Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe.
2019. Tensor Algebra Compilation withWorkspaces. In 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
180–192. https://doi.org/10.1109/CGO.2019.8661185

[29] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. 2017. The Tensor Algebra Compiler. Proc. ACM
Program. Lang. 1, OOPSLA (Oct. 2017), 77:1–77:29. https://doi.org/10.
1145/3133901

[30] Fredrik Berg Kjølstad. 2020. Sparse tensor algebra compilation. Thesis.
Massachusetts Institute of Technology. https://dspace.mit.edu/handle/
1721.1/128314 Accepted: 2020-11-03T20:30:04Z ISBN: 9781201259824.

[31] Vladimir Kotlyar. 1999. Relational Algebraic Techniques for the Synthesis
of Sparse Matrix Programs. PhD Thesis. Cornell. 00000.

[32] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. 1997. Compiling
parallel sparse code for user-defined data structures. Technical Report.
Cornell. 00000.

[33] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. 1997. A rela-
tional approach to the compilation of sparse matrix programs. In Euro-
Par’97 Parallel Processing (Lecture Notes in Computer Science), Christian
Lengauer, Martin Griebl, and Sergei Gorlatch (Eds.). Springer, Berlin,
Heidelberg, 318–327. https://doi.org/10.1007/BFb0002751

[34] Scott Kovach and Fredrik Kjolstad. 2022. Correct Compilation of Semir-
ing Contractions. http://arxiv.org/abs/2207.13291 arXiv:2207.13291
[cs].

[35] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum.
2015. Human-level concept learning through probabilistic program
induction. Science 350, 6266 (Dec. 2015), 1332–1338. https://doi.
org/10.1126/science.aab3050 Publisher: American Association for the
Advancement of Science.

[36] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based
learning applied to document recognition. Proc. IEEE 86, 11 (Nov.
1998), 2278–2324. https://doi.org/10.1109/5.726791 Conference Name:
Proceedings of the IEEE.

[37] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data

[38] Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan
Ragan-Kelley. 2022. Verified tensor-program optimization via high-
level scheduling rewrites. Proceedings of the ACM on Programming
Languages 6, POPL (Jan. 2022), 55:1–55:28. https://doi.org/10.1145/
3498717

[39] Geoffrey Mainland, Roman Leshchinskiy, and Simon Peyton Jones.
2017. Exploiting vector instructions with generalized stream fusion.
Commun. ACM 60, 5 (April 2017), 83–91. https://doi.org/10.1145/
3060597

[40] Tim Mattson, David Bader, Jon Berry, Aydin Buluc, Jack Dongarra,
Christos Faloutsos, John Feo, John Gilbert, Joseph Gonzalez, Bruce
Hendrickson, Jeremy Kepner, Charles Leiserson, Andrew Lumsdaine,
David Padua, Stephen Poole, Steve Reinhardt, Mike Stonebraker, Steve
Wallach, and Andrew Yoo. 2013. Standards for graph algorithm primi-
tives. In 2013 IEEE High Performance Extreme Computing Conference
(HPEC). 1–2. https://doi.org/10.1109/HPEC.2013.6670338

[41] Abhijeet Mohapatra and Michael Genesereth. 2012. Incrementally
maintaining run-length encoded attributes in column stores. In Pro-
ceedings of the 16th International Database Engineering & Applications
Sysmposium (IDEAS ’12). Association for Computing Machinery, New
York, NY, USA, 146–154. https://doi.org/10.1145/2351476.2351493

[42] Thomas Neumann. 2011. Efficiently compiling efficient query plans
for modern hardware. Proceedings of the VLDB Endowment 4, 9 (June
2011), 539–550. https://doi.org/10.14778/2002938.2002940

[43] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-
case Optimal Join Algorithms. J. ACM 65, 3 (March 2018), 16:1–16:40.
https://doi.org/10.1145/3180143

[44] William Pugh and Tatiana Shpeisman. 1999. SIPR: A New Framework
for Generating Efficient Code for Sparse Matrix Computations. In
Languages and Compilers for Parallel Computing (Lecture Notes in
Computer Science), Siddhartha Chatterjee, Jan F. Prins, Larry Carter,
Jeanne Ferrante, Zhiyuan Li, David Sehr, and Pen-Chung Yew (Eds.).
Springer, Berlin, Heidelberg, 213–229. https://doi.org/10.1007/3-540-
48319-5_14

[45] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy,
Saman Amarasinghe, and Frédo Durand. 2012. Decoupling algorithms
from schedules for easy optimization of image processing pipelines.

53

https://doi.org/10.1145/62038.62043
https://doi.org/10.1145/2185520.2185540
http://arxiv.org/abs/2110.10221
http://arxiv.org/abs/2110.10221
https://doi.org/10.1145/3511528.3511535
https://doi.org/10.1145/3511528.3511535
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/3485505
https://doi.org/10.1145/3485505
https://doi.org/10.1137/1.9781611971033.ch5
https://doi.org/10.1137/1.9781611971033.ch5
https://doi.org/10.48550/arXiv.2208.14610
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1109/HPEC.2016.7761646
https://doi.org/10.1109/HPEC.2016.7761646
https://doi.org/10.1145/3093333.3009880
https://doi.org/10.1109/CGO.2019.8661185
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://dspace.mit.edu/handle/1721.1/128314
https://dspace.mit.edu/handle/1721.1/128314
https://doi.org/10.1007/BFb0002751
http://arxiv.org/abs/2207.13291
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1109/5.726791
http://snap.stanford.edu/data
https://doi.org/10.1145/3498717
https://doi.org/10.1145/3498717
https://doi.org/10.1145/3060597
https://doi.org/10.1145/3060597
https://doi.org/10.1109/HPEC.2013.6670338
https://doi.org/10.1145/2351476.2351493
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/3180143
https://doi.org/10.1007/3-540-48319-5_14
https://doi.org/10.1007/3-540-48319-5_14

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Amarasinghe

ACM Transactions on Graphics 31, 4 (July 2012), 32:1–32:12. https:
//doi.org/10.1145/2185520.2185528

[46] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: a lan-
guage and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’13). Association for Computing Machinery, New York,
NY, USA, 519–530. https://doi.org/10.1145/2491956.2462176

[47] Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson,
Stephen Chou, Shoaib Kamil, Saman Amarasinghe, and Fredrik Kjol-
stad. 2020. A sparse iteration space transformation framework for
sparse tensor algebra. Proceedings of the ACM on Programming Lan-
guages 4, OOPSLA (Nov. 2020), 158:1–158:30. https://doi.org/10.1145/
3428226

[48] Jessica Shi, Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe.
2021. An Attempt to Generate Code for Symmetric Tensor Compu-
tations. https://doi.org/10.48550/arXiv.2110.00186 arXiv:2110.00186
[cs].

[49] Edgar Solomonik and Torsten Hoefler. 2015. Sparse Tensor Algebra
as a Parallel Programming Model. arXiv:1512.00066 [cs] (Nov. 2015).
http://arxiv.org/abs/1512.00066 arXiv: 1512.00066.

[50] Edgar Solomonik, Devin Matthews, Jeff R. Hammond, John F. Stanton,
and James Demmel. 2014. A massively parallel tensor contraction
framework for coupled-cluster computations. J. Parallel and Distrib.
Comput. 74, 12 (Dec. 2014), 3176–3190. https://doi.org/10.1016/j.jpdc.
2014.06.002

[51] Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. 2018.
The Sparse Polyhedral Framework: Composing Compiler-Generated
Inspector-Executor Code. Proc. IEEE 106, 11 (Nov. 2018), 1921–1934.
https://doi.org/10.1109/JPROC.2018.2857721 Conference Name: Pro-
ceedings of the IEEE.

[52] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2020.
Efficient Processing of Deep Neural Networks. Synthesis Lectures on
Computer Architecture 15, 2 (June 2020), 1–341. https://doi.org/10.
2200/S01004ED1V01Y202004CAC050 Publisher: Morgan & Claypool
Publishers.

[53] William Thies, Steven Hall, and Saman Amarasinghe. 2009. Manip-
ulating lossless video in the compressed domain. In Proceedings of
the 17th ACM international conference on Multimedia (MM ’09). As-
sociation for Computing Machinery, New York, NY, USA, 331–340.
https://doi.org/10.1145/1631272.1631319

[54] Ruiqin Tian, Luanzheng Guo, Jiajia Li, Bin Ren, and Gokcen Kestor.
2021. A High-Performance Sparse Tensor Algebra Compiler in Multi-
Level IR. arXiv:2102.05187 [cs] (Feb. 2021). http://arxiv.org/abs/2102.
05187 arXiv: 2102.05187.

[55] Todd Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join
Algorithm. https://doi.org/10.5441/002/ICDT.2014.13 Type: dataset.

[56] Richard Vuduc, James W. Demmel, and Katherine A. Yelick. 2005.
OSKI: A library of automatically tuned sparse matrix kernels. Journal
of Physics: Conference Series 16 (Jan. 2005), 521–530. https://doi.org/
10.1088/1742-6596/16/1/071 Publisher: IOP Publishing.

[57] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. DISTAL: the
distributed tensor algebra compiler. In Proceedings of the 43rd ACM SIG-
PLAN International Conference on Programming Language Design and
Implementation (PLDI 2022). Association for Computing Machinery,
New York, NY, USA, 286–300. https://doi.org/10.1145/3519939.3523437

[58] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2022.
SparseTIR: Composable Abstractions for Sparse Compilation in Deep
Learning. https://doi.org/10.48550/arXiv.2207.04606 arXiv:2207.04606
[cs].

[59] Tuowen Zhao, Tobi Popoola, Mary Hall, Catherine Olschanowsky,
and Michelle Mills Strout. 2022. Polyhedral Specification and Code
Generation of Sparse Tensor Contraction with Co-Iteration. https:
//doi.org/10.48550/arXiv.2208.11858 arXiv:2208.11858 [cs].

[60] Ningxin Zheng, Bin Lin, Quanlu Zhang, Lingxiao Ma, Yuqing Yang,
Fan Yang, Yang Wang, Mao Yang, and Lidong Zhou. 2022. SparTA:
Deep Learning Model Sparsity via Tensor with Sparsity Attribute.
(2022), 21.

Received 2022-09-02; accepted 2022-11-07

54

https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/3428226
https://doi.org/10.1145/3428226
https://doi.org/10.48550/arXiv.2110.00186
http://arxiv.org/abs/1512.00066
https://doi.org/10.1016/j.jpdc.2014.06.002
https://doi.org/10.1016/j.jpdc.2014.06.002
https://doi.org/10.1109/JPROC.2018.2857721
https://doi.org/10.2200/S01004ED1V01Y202004CAC050
https://doi.org/10.2200/S01004ED1V01Y202004CAC050
https://doi.org/10.1145/1631272.1631319
http://arxiv.org/abs/2102.05187
http://arxiv.org/abs/2102.05187
https://doi.org/10.5441/002/ICDT.2014.13
https://doi.org/10.1088/1742-6596/16/1/071
https://doi.org/10.1088/1742-6596/16/1/071
https://doi.org/10.1145/3519939.3523437
https://doi.org/10.48550/arXiv.2207.04606
https://doi.org/10.48550/arXiv.2208.11858
https://doi.org/10.48550/arXiv.2208.11858

	Abstract
	1 Introduction
	2 Motivating Example
	3 Looplet Language
	4 Formats
	5 Extended Concrete Index Notation
	5.1 Concrete Index Notation Background
	5.2 Concrete Index Notation Extensions

	6 Lowering
	6.1 Looplet Lowerers
	6.2 Choosing Lowerers

	7 Index Modifiers
	8 Evaluation
	8.1 SpMSpV
	8.2 Triangle Counting
	8.3 Convolution
	8.4 Alpha Blending
	8.5 All-Pairs Image Similarity

	9 Related Work
	10 Conclusion
	Acknowledgments
	A Finch CGO 2023 Artifact
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 How Delivered
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Experiment Customization

	References

