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This paper extends prior work on sparse tensor algebra compilers to generate asymptotically efficient code

for tensor expressions with affine subscript expressions. Our technique enables compiler support for a wide

range of sparse computations, including sparse convolutions and pooling that are widely used in ML and

graphics applications. We propose an approach that gradually rewrites compound subscript expressions to

simple subscript expressions with loops that exploit the sparsity pattern of the input sparse tensors. As a

result, the time complexity of the generated kernels is bounded by the number of stored elements and not by

the shape of the tensors. Our approach seamlessly integrates into existing frameworks and is compatible with

recent advances in compilers for sparse computations, including the flexibility to efficiently handle arbitrary

combinations of different sparse tensor formats. The implementation of our algorithm is open source and

upstreamed to the MLIR sparse compiler. Experimental results show that our method achieves 19.5x speedup

when compared with the state-of-the-art compiler-based method at 99.9% sparsity. The generated sparse

kernels start to outperform dense convolution implementations at about 80% sparsity.
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1 Introduction
Tensors are fundamental abstractions to represent high-dimensional data in many fields of science,

engineering, data analytics, and machine learning. Often, these tensors are sparse, i.e., contain many

zeros, which offers interesting opportunities for reducing their memory footprint as well as reducing

the computation time of operations on such tensors. Exploiting sparsity by hand has been well-

studied in the past for sparse matrices arising in linear-algebra problems [14, 21, 44, 51, 59]. Utilizing

sparsity in high-dimensional tensors is becoming increasingly important as sparse neural networks

are gaining more attention [27]. However, any performance benefit from sparsity comes with an

increased complexity in both data representations and algorithmic implementation. Given the
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Fig. 1. System overview with contributions of the paper highlighted.

wide range of different sparse-tensor formats and possible numeric formulations, it is notoriously

difficult to implement a sparse computation properly. Thanks to pioneering research in sparse

compilers [4–7] and recent advances to generalize sparse compiler techniques [25, 29–31], a wide

range of sparse computations can now be automatically generated by compilers with greater ease,

flexibility, and often better performance compared to hand-written sparse code.

Despite these advances, various computations are still not supported by existing sparse-tensor

compilers. Among those cases, many of the compilation shortcomings are caused by the use of

compound subscript expressions, i.e., subscript expressions using more than one index variable.

For example, a 1-D convolution 𝐴𝑖 =
∑𝑛

𝑘=0
𝐼𝑖+𝑘𝐹𝑘 imposes the compound subscript expression 𝑖 + 𝑘

on tensor 𝐼 . Generating efficient code for such computations is difficult because multiple values of

index variables need to be determined so as to fetch the desired stored element in a sparse tensor.

Generally, each index variable corresponds to a single loop and multiple loops are required to

determine the value of a compound subscript expression. For dense computations, these loops incur

no performance penalty. For sparse computations, on the other hand, the lack of random-access

support in most sparse data structures poses a performance challenge. For this reason, existing

methods are restricted to trivial index expressions and fail to generate code for the more complex

cases.

Other research has explored how to enhance the capability of the existing framework, resulting

in compiler support for important kernels like sparse convolution, as presented in TACO-UCF [56].

Our work generalizes over TACO-UCF. Similar to TACO-UCF, our technique generates code for

multiple convolution variants. In contrast to TACO-UCF, our work achieves better asymptotic

complexity in many cases by exploiting additional optimization opportunities for sparsely iterating

over sparse tensors. The differences between the code generated by TACO-UCF and our work are

explained in more detail in Section 2.

Our code generation algorithm generalizes the sparse-iteration model [28, 31] beyond simple

index expressions. We focus on traditional convolutions as examples and experimental validation

in this paper, but our algorithm generalizes to a much wider class of computations and offers the

same level of flexibility as TACO to allow arbitrary combinations of different operations on sparse

tensors, allowing us to handle much more complicated tensor index expressions such as:

• 𝐵𝑖+𝑗+𝑘 , i.e., more than two index variables in a single subscript expression,

• 𝐴𝑖+𝑗𝐵𝑖+𝑘 , i.e., more than one input tensor with compound subscript expressions,

• 𝐴2𝑖+𝑗 , i.e., subscript expressions with constant coefficients on index variables,

• and arbitrary combinations of the above cases.
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Naive TACO-UCF MLIR (This work)

// dense outer loop
for (int i = 0; i < n; i++) {

// dense inner loop
for (int j = 0; j < k; j++)

locate(C, i + j);
...

}

// dense outer loop
for (int i = 0; i < n; i ++) {

auto [lo, hi] = searchPos (..);
// sparse inner loop
for(; lo < hi; lo++)

...
}

// sparse outer loop
for (auto w : nonEmptySubsec(C,k)) {

int i = w.offset , lo = w.lo;
// sparse inner loop
for(; lo < w.hi; lo++)

...
}

𝑂
(
𝑛 · 𝑘 · 𝑙𝑜𝑔(𝑛𝑛𝑧 (𝐶))

)
𝑂
(
𝑛 · 𝑛𝑛𝑧 (𝐶) · 𝑘

𝑛 + 𝑘
)

𝑂
(
𝑚𝑖𝑛(𝑛, 𝑘 · 𝑛𝑛𝑧 (𝐶)) · 𝑘 · 𝑛𝑛𝑧 (𝐶)

𝑛 + 𝑘
)

Fig. 2. Three implementations of the 1D sparse convolution 𝐴𝑖 =
∑𝑛

𝑗=0𝐶𝑖+𝑗𝐵 𝑗 with different asymptotic
complexity. 𝐶 is sparse, 𝐵 is dense, 𝑖 ∈ [0, 𝑛), and 𝑗 ∈ [0, 𝑘).

The technical contributions of this paper to the field of sparse compilation are the following:

• A generalized theory of sparse iteration that supports compound affine subscript expressions

on sparse tensors.

• A new code generation algorithm that retains the sparsity pattern of the input tensor, making

compiler generated sparse convolution kernel practical for a wide range of sparse storage

formats.

Figure 1 shows an overview of our approach. The improvements over existing methods are

highlighted. Our generalization unifies the theory for handling trivial and non-trivial subscript

expressions, making the original sparse tensor algebra compilation work [31] the base case under

the new framework. Conceptually, our method gradually reduces non-trivial subscript expressions

to trivial ones by index variable reduction. Our implementation is made publicly available as a part

of the sparse compiler technology [3] embedded in the MLIR compiler infrastructure [36]. We

compared our system with the state-of-the-art compiler-based approach, TACO-UCF [56], and

show that the proposed algorithm, while performs equally well on the set of sparse formats that

TACO-UCF excels, is able to handle more sparse tensor formats efficiently, especially formats used

to compress very sparse tensors. Our experimental results show a 2× – 19× runtime speedup at

90% – 99.9% sparsity.

2 Motivation and Background
This section presents a sparse 1-D convolution kernel (𝐴𝑖 =

∑𝑛
𝑗=0𝐶𝑖+𝑗𝐵 𝑗 ) as a running example

to provide a high level explanation of our approach. Later sections will discuss how the framework

can be extended to handle high-dimensional tensors and more complex expressions.

Since dense arrays support random accesses, i.e., values indexed by arbitrary coordinates can be

located and loaded in constant time, the implementation to extract values from dense arrays with

compound subscript expression is straightforward. However, most sparse tensor formats do not

support such constant-time lookup. As the result, problems arise when multiple index variables are

used in a single compound subscript expression, where multiple loops are required to resolved the

expression.

As shown in Figure 2, a naive code generation algorithm to iterate over the values of 𝐶𝑖+𝑗 would
simply generate two dense loops that independently iterate over 𝑖 and 𝑗 . The resulting sparse kernel

has a time complexity that is worse than the corresponding dense computation, due to an extra

𝑂 (𝑙𝑜𝑔(𝑛𝑛𝑧)) binary search for locating each value. TACO-UCF improves on the naive approach

by only generating a dense loop for the outer index variable, using a sparse inner loop to iterate

over subsections of the sparse input, as shown in the center of Figure 2. By utilizing the fact that

𝑖 is monotonically increasing, the starting position can be found with searchPos in amortized

𝑂 (1) time [56]. While this implementation is far more efficient than the naive approach with two
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Fig. 3. Illustration of visited elements by the code generated by our algorithm.

dense loops, the resulting kernel is still asymptotically sub-optimal because of the dense outer loop

around the locate operation. Our approach, as shown on the right side of Figure 2, goes further by

transforming the problems into finding and iterating over a sparse set of non-empty subsections
∗
,

with 𝑖 being reduced to the offset of the subsection being visited. This difference leads to a reduction

from 𝑂 (𝑛) to 𝑂 (𝑚𝑖𝑛(𝑛, 𝑘 · 𝑛𝑛𝑧 (𝐶)))†. For practical convolution kernels, the typical value of 𝑘 is

tiny (e.g., 𝑘 = 3), so 𝑘 · 𝑛𝑛𝑧 (𝐶) ≪ 𝑛 when 𝐶 is very sparse.

Now consider running the same 1-D convolution𝐴𝑖 =
∑𝑛

𝑗=0𝐶𝑖+𝑗𝐵 𝑗 over a sparse vector as shown

in Figure 3 with | 𝑗 | = 2, |𝑖 | = 8 (i.e., 𝑖 ∈ [0, 2), 𝑗 ∈ [0, 8)). To locate a value at 𝑖 + 𝑗 in𝐶𝑖+𝑗 , both values

of 𝑖 and 𝑗 must first be determined. Suppose 𝑖 is iterated over first, since it is used in a compound

subscript expression, the sparse set of values to traverse for 𝑖 are no longer equal to the set of stored
coordinates in the sparse tensor. In Figure 3, since the set of stored coordinates is {2, 8, 9} and the

convolution kernel has a width of two, 𝑖 should iterate over the coordinate values {1, 2, 7, 8}. As we
elaborate more in Section 3.1, conceptually, the set of value to visit for a reduced index variables

from compound subscript expressions can be viewed as the set of offsets of non-empty subsections

that can be extracted from the sparse tensor. So iterating over 𝑖 in 𝑖 + 𝑗 is equivalent of iterating

over the set of non-empty subsections with size equal to | 𝑗 | = 2. The value of 𝑖 is then determined

by the offset of the current subsection. Figure 3 shows that the set of non-empty subsections of

size 2 is {𝐶 [1 : 3],𝐶 [2 : 4],𝐶 [7 : 9],𝐶 [8 : 10]}, and thus the corresponding offset set {1, 2, 7, 8} is
the set of valid values for 𝑖 with the given input. Unlike TACO-UCF, which iterates over every

𝑖 ∈ [0, 8), our approach skips 𝑖 ∈ [3, 7) and thus has a better performance. For very sparse data, the

set of skipped values of 𝑖 becomes greater than the set of visited values. The paper presents the

first systematic compiler-based approach to specify (Section 3.2) and traverse (Section 5.2) only
non-empty subsections in a sparse tensor of various formats.

After 𝑖 is reduced from the subscript expression 𝑖 + 𝑗 , the problem becomes simple enough to be

handled by existing approaches. For instance, when 𝑖 is reduced to 𝑖 = 1, the problem is reduced

to 𝐴1 =
∑𝑛

𝑗=0𝐶 [1 : 3] 𝑗 × 𝐵 𝑗 with only a simple subscript expression. Standard convolutions using

multiplication (a conjunctive operator) require both operands to be non-zero to produce non-zero

results. Disjunctive operators such as addition result in multiple cases where the result is non-zero

if any operand is non-zero. For example, in 𝐴𝑖 =
∑𝑛

𝑗=0𝐶𝑖+𝑗 + 𝐵 𝑗 with sparse 𝐶 and dense 𝐵, the

loops need to handle multiple cases depending on whether 𝐶 [1 : 3] is empty after 𝑖 is reduced to

𝑖 = 1. That is, both cases of 𝐴1 =
∑𝑛

𝑗=0𝐶 [1 : 3] 𝑗 + 𝐵 𝑗 and 𝐴1 =
∑𝑛

𝑗=0 𝐵 𝑗 need to be handled. Both

disjunctive and conjunctive operators are handled in our code generation algorithm (see Section 5.1

for more details).

∗
A.k.a., tensor slices. We use the term “tensor subsections” in this paper to avoid confusion since we do not actually extract

tensor slices but use it as the abstraction to explain the algorithm.

†
The expression estimates the maximum number of non-empty subsections of size 𝑘 on𝐶 . Since each non-zero element

can at most be included by 𝑘 subsections, hence𝑂 (𝑘 · 𝑛𝑛𝑧 (𝐶 ) ) . In addition, the number of non-empty subsections on𝐶 of

size 𝑘 is bounded by 𝑛 in the worst case, hence𝑂 (𝑚𝑖𝑛 (𝑛,𝑘 · 𝑛𝑛𝑧 (𝐶 ) ) ) .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 281. Publication date: October 2024.



Compiler Support for Sparse Tensor Convolutions 281:5

3 An Iteration Model for Compound Subscript Expressions
Figure 4 defines a language grammar for tensor index notation expressions [31] that allows com-

pound subscript expressions. Our grammar introduces a new definition called an index term that

allows optional coefficients on index variables, and a new definition called subscript expression to

allow compound affine expressions for tensor subscripts. In this section, we show how a compound

subscript expression can be reduced to a trivial one using non-empty subsection driven iterations.

3.1 Non-empty Subsection-driven Iteration
Section 2 informally explained how loops for a reduction of index variable 𝑖 from a compound

subscript expression 𝑖 + 𝑗 can be transformed into finding a set of non-empty subsections of size | 𝑗 |.
In this section, we extend the idea to handle multi-dimensional tensors and introduce the new loop

primitives to construct loops over non-empty subsections.

3.1.1 Subsection Driven Loops, a 2-D example: Figure 5 illustrates an abstraction of the code

generated for iterating over the compound subscript expression 𝑇𝑖+𝑘,𝑗+𝑙 . As shown in the figure, to

construct non-empty subsection driven loops, we introduce the following loop primitives (the code

generation algorithm for each individual primitive is described in Section 5):

• S = subsect_begin(T, D, Z) to extract the first non-empty subsection S (with the smallest offset)

from T along dimension D with size Z.

• S = subsect_next(S) to forward the current subsection S and find the next non-empty subsection

with a larger offset.

• subsect_offset to extract the offset of the subsection.

• subsect_end(S) to terminate loops if the current subsection is empty (and there is no remaining

subsection to visit).

Conceptually, since each index variable represents a range of data to be visited by a loop, to

handle index variables 𝑖, 𝑘, 𝑗, 𝑙 used in 𝑇𝑖+𝑘,𝑗+𝑙 , we need to generate four nested loops as shown

in Figure 5. Depending on the user-selected loop order, non-empty subsection driven loops can

be placed at different depths, resulting in different access patterns. In the remaining of the paper,

we say an index variable 𝑖 is reduced from a subscript expression (or the corresponding loop of

𝑖 is an index reduction loop) if generating a loop for 𝑖 does not determine the value of the entire

subscript expression (i.e., 𝑖 is not the last index variable to be handled in the subscript expression

per user-selected loop generating order). Otherwise, we say 𝑖 resolves the subscript expression (or

the corresponding loop of 𝑗 is an index resolve loop). For example, when using loop order 𝑖 → 𝑗 (i.e.,

𝑖 is an outer loop of 𝑗 ) to handle the subscript expression 𝑖 + 𝑗 , loop 𝑖 is an index reduction loop

and loop 𝑗 is an index resolve loop. Only index reduction loops iterate over non-empty subsections

and index resolve loops directly iterate over stored non-zeros.

assigment ≔ 𝑡𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑒𝑥𝑝𝑟 operation ≔ −𝑒𝑥𝑝𝑟 | 𝑒𝑥𝑝𝑟 + 𝑒𝑥𝑝𝑟

expr ≔ 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 | 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 | 𝑒𝑥𝑝𝑟 − 𝑒𝑥𝑝𝑟 | 𝑒𝑥𝑝𝑟 × 𝑒𝑥𝑝𝑟

| 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 | 𝑎𝑐𝑐𝑒𝑠𝑠 indices ≔ 𝑖𝑛𝑑𝑒𝑥 | 𝑖𝑛𝑑𝑒𝑥, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠

| (𝑒𝑥𝑝𝑟 ) reduction ≔
∑

𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑒𝑥𝑝𝑟

subscript ≔ 𝑖𝑑𝑥_𝑡𝑒𝑟𝑚 + 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡 access ≔ 𝑡𝑒𝑛𝑠𝑜𝑟𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡∗

| 𝑖𝑑𝑥_𝑣𝑎𝑟 idx_term ≔ 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 | 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 × 𝑖𝑛𝑑𝑒𝑥 | 𝑖𝑛𝑑𝑒𝑥

index ≔ 𝑖 | 𝑗 | ... literal ≔ 1 | 2 | ...

Fig. 4. The extended grammar of tensor index notation [31]. Items in blue are our extensions to handle
non-trivial subscript expression.
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Fig. 5. The non-empty subsection driven loops used to traverse a 2-D matrix with compound subscript
expression as in 𝑇𝑖+𝑘,𝑗+𝑙 (supposing 𝑘 ∈ [0, 2) and 𝑙 ∈ [0, 2)). Figures on the left and right show different loop
orders (schedules) that lead to different strategies to extract non-empty subsections. ■ marks the non-zeros
in the matrix. Shadowed area marks the smallest subsections extracted by the innermost subsection driven
loop.

Figure 5 shows two potential loop orders to traverse𝑇𝑖+𝑘,𝑗+𝑙 . For the loop order (𝑖 → 𝑗 → 𝑘 → 𝑙 )

used in Figure 5 (left), the two outermost loops that handle index variable 𝑖 and 𝑗 are subsection

driven loops because of the remaining unhandled index variable 𝑘 in 𝑖 +𝑘 and 𝑙 in 𝑗 + 𝑙 respectively.
The outermost loop for 𝑖 iterates over every non-empty subsection T[i,i+2][:] and the second

loop refines the current subsection to include only T[i,i+2][j:j+2]. At the first iteration, the two
subsection driven loops locate a 2 × 2 subsection at T[0:2][0:2] (i.e., 𝑖 = 0, 𝑗 = 0). The following

two inner loops then iterate over the extracted subsection T[0:2][0:2] and locate the first (and

only) non-zero included in the subsection at T[0+1][0+0] (i.e., 𝑘 = 1, 𝑙 = 0). After exhausting all

the non-zeros in the subsection, T[0:2][0:2] is then forwarded to T[0:2][2:4] (i.e., 𝑖 = 0, 𝑗 = 2)

in the next iteration.

On the other hand, for the loop order (𝑖 → 𝑘 → 𝑗 → 𝑙 ) used in Figure 5 (right), the two outermost

loops handle index variable 𝑖 and 𝑘 from the same subscript expression 𝑖 + 𝑘 . As the result, the

subsection required to reduce 𝑗 from 𝑗 + 𝑙 in the third loop is extracted from a single row of T (i.e.,

T[0+0] at the first iteration), which leads to a 1-D subsection T[0+0][3:5] to be extracted (i.e.,

𝑗 = 3). After exhausting all non-zeros in T[0+0][3:5] by the innermost loop, 𝑘 is then forwarded

the second non-empty row T[0+1] and 𝑗 = 0 is used to extract the next subsection T[0+1][0:0+2]
to be iterated over.

3.1.2 Proof of Correctness. In this paragraph, we formalize the problem transformation (i.e., trans-

forming a reduction of index variable from compound subscript expressions into subsection driven

loops). We also generalize the problem to allow arbitrarily complex subscript expressions 𝑖+ 𝑗+𝑘+. . .
(𝑖 ∈ [0, |𝑖 |), 𝑗 ∈ [0, | 𝑗 |), 𝑘 ∈ [0, |𝑘 |), . . . ‡ and prove the correctness of the transformation.

To efficiently reduce 𝑖 from 𝐶𝑖+𝑗+𝑘+..., an optimal algorithm should only iterate over the set of

constrained values of 𝑖′ if and only if there exists an index 𝑖𝑑𝑥 , and values 𝑗 , 𝑘 + . . . , such that

𝑖𝑑𝑥 = 𝑖′+ 𝑗 +𝑘+ . . . , and 𝑖𝑑𝑥 locates a non-zero element in𝐶 . Formally, with the remaining free index
variables set F = { 𝑗 ∈ [0, | 𝑗 |), 𝑘 ∈ [0, |𝑘 |), ...}, the set of constrained value I that should be iterated

to optimally reduce 𝑖 can be described as I = {𝑖′ | ∃ 𝑗 ∈ [0, | 𝑗 |), ∃𝑘 ∈ [0, |𝑘 |), ...,𝐶 [𝑖′+ 𝑗 +𝑘+ ...] ≠ 0}.

‡
In our implementation, the bound of each index variable is inferred by MLIR linalg dialect in a similar way as described

by tensor comprehensions [53].
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Fig. 6. Example showing how a subsection can be extracted from a sparse tensor storage tree. ■ marks the
elements that are included by pairs of position low and high bounds; ■ marks the elements that are actually
included in the subsection specified by the metadata (i.e., offset and size).

.

On the other hand, we say a subsection 𝐶 [𝑜 : 𝑜 + 𝑠] extracted from 𝐶 is non-empty if and only if

𝐶 [𝑜 : 𝑜 + 𝑠] covers at least one specified element stored in 𝐶 (i.e., ∃𝑖𝑑𝑥 ∈ [0, 𝑠),𝐶 [𝑜 + 𝑖𝑑𝑥] ≠ 0). By

extracting subsections with size equals to the sum of bounds of remaining free index variables (i.e.,

𝑠 =
∑

𝑓 ∈F |𝑓 |) from 𝐶 and denoting the set of non-empty subsections with size 𝑠 as N𝑐 = {𝐶 [𝑜 :

𝑜 + 𝑠] | 𝑜 ∈ [0, |𝑖 |) ∧ ¬𝑒𝑚𝑝𝑡𝑦 (𝐶 [𝑜 : 𝑜 + 𝑠])}, we can formally prove the correctness of the problem

transformation by proving the following theorem.

Theorem 3.1. 𝐶 [𝑖′ : 𝑖′ + 𝑠] ∈ N𝑐 ⇔ 𝑖′ ∈ I

Proof. 𝐶 [𝑖′ : 𝑖′+𝑠] ∈ N𝑐 ⇒ ¬𝑒𝑚𝑝𝑡𝑦 (𝐶 [𝑖′ : 𝑖′+𝑠]). By the definition of the non-empty subsection,

we have ❶ ∃𝑠′ ∈ [0, |𝑠 |) ⇒ 𝐶 [𝑖′ + 𝑠′] ≠ 0. On the other hand, since 𝑠 =
∑

𝑓 ∈F |𝑓 | = | 𝑗 | + |𝑘 | + . . . ,

we know that ❷ ∃ 𝑗 ∈ [0, | 𝑗 |), ∃𝑘 ∈ [0, |𝑘 |), . . . such that 𝑠′ = 𝑗 + 𝑘 + .... Combining ❶ and ❷, we

know that ∃ 𝑗 ∈ [0, | 𝑗 |), ∃𝑘 ∈ [0, |𝑘 |), ...,⇒ 𝐶 [𝑖′ + 𝑗 +𝑘 + ...] ≠ 0, thus, by the definition of I, 𝑖′ ∈ I.
The reverse can be proven similarly. □

Theorem 3.1.2 forms the foundation for reducing index terms from compound subscript expres-

sions by generating non-empty subsection driven loops. To extend Theorem 3.1.2 to handle an

index term with a constant coefficient 𝑐 , the non-empty subsection can be specified by an additional

stride = 𝑐 .

3.2 Sparse Subsection Specification
In this section, we describe a detailed approach that can precisely specify a multi-dimensional

subsection from a sparse tensor. As we show later in Section 5, we can efficiently construct the

described data structure required to specify a subsection on-the-fly during iteration.

The storage of a sparse tensor, as the 2-D matrix shown in Figure 6 (a), can conceptually be

viewed as a tree, where each tree level represents a dimension of the sparse tensor. Meanwhile, a

sparse tensor subsection can be viewed as a sub-tree of the original storage tree as in Figure 6 (b).

Different sparse tensor formats encode the tree structure in different ways. Using the same data

representation as in [29] as an example, for a compressed dimension, it requires two integer arrays,
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namely position and index array. They together form a segmented vector, with one segment (a

list of child nodes) per entry in the previous dimension (the parent node). The index array stores

the indices (coordinates) of specified elements in that dimension, while the pos array stores the

position range for the corresponding segment in the next dimension. That is, segment i is located

by pos[i] and pos[i+1]. For example, as in Figure 6, the column segment for index𝑟𝑜𝑤[1] is

specified by the range [pos𝑐𝑜𝑙[1], pos𝑐𝑜𝑙[2]).
To specify a sparse tensor subsection, a similar structure can be constructed to specify a subtree

from the original storage tree. In our technique, it is achieved by:

• memorizing the subsection metadata, i.e., a pair of (offset, size), for each dimension, and

• maintaining a separate position array that only includes the coordinates in the subsection.

As shown in Figure 6 (c) and (d), we store 3 instead of 2 for the lower bound of the second segment

for column because (index𝑐𝑜𝑙[2] = 0) < offset𝑐𝑜𝑙 (thus should not be included in the subsection).
In our technique, we allow loose upper bounds for the subsection position range, meaning that

the range could contain indices that exceed the subsection boundary. As shown in Figure 6 (c),

the position range for the first dimension of A[0:2][1:3] is [0, 3) despite that 2 ∈ [0, 3) and
index𝑟𝑜𝑤[2] = 3 exceeds the boundary of A[0:2] (since 3 ≥ 2). This is because:

(1) Finding the tight upper bound requires a forward lookup on the index array to locate the

first out-of-bound coordinate, which can be expensive.

(2) We can still precisely iterate only in-bound coordinates without the tight upper bound by

generating a break statement upon hitting the first out-of-bound coordinate.

To take a subsection over a dense dimension, a pair of (offset, size), as shown in Figure 6 (d),

is sufficient.

4 Generalized Iteration Graph
An iteration graph defines the loop order for iterating over stored elements of sparse tensors used

in a single tensor expression. In the original definition [31], an iteration graph is composed of a set

of index variables and a set of tensor paths, where each index variable represents the iteration over

one level of a tensor, or co-iteration over levels from multiple tensors (when the same index variable

is used by multiple tensors in the tensor expression). To handle non-trivial subscript expressions,

we introduce the concept of an unresolved index term set.

Definition 4.1. An unresolved index term set of a tensor level𝑇𝑙 is a subset of the set of index terms

used in the subscript expression on 𝑇𝑙 . A tensor level 𝑇𝑙 , together with its unresolved index term

set is denoted in the form of S𝑇𝑙 : {𝑖, 𝑗, 𝑘}.
The initial value of S𝑇𝑙 can be determined by extracting all index terms used in the subscript

expression on𝑇𝑙 . For example, given the tensor expression𝐴𝑖, 𝑗 = 𝐼𝑖 𝐽𝑖, 𝑗+2, we have S𝐼0 : {𝑖}, S 𝐽0 : {𝑖}
and S 𝐽1 : { 𝑗, 2} initially. At a high level, S𝑇𝑙 specifies the set of free index terms whose values

remain to be determined at the current code generation stage, that is, loops to resolve those index

terms have not yet been generated. By only admitting tensor expression with |S𝑇𝑙 |= 1, we fall back

to the original framework in which only trivial subscript expressions can be handled.

Definition 4.2. A tensor path 𝑝∗ = {(𝑣𝑖 , S𝑇𝑙 ), ...} is a list of index variables 𝑣𝑖 that are annotated
with an unresolved index term set S𝑇𝑙 .

Definition 4.3. An iteration graph is a directed graph 𝐺 = (𝑉 , 𝑃∗) with a set of index variables

𝑉 = {𝑣𝑖 , 𝑣 𝑗 , ...} and a set of extended tensor path 𝑃∗ = {𝑝∗𝑖 , 𝑝∗𝑗 , ...}.

Figure 7 shows how an iteration graph can be constructed from a tensor expression with non-

trivial index expressions. As in figure 7 (b), the path to access tensor 𝐵 is annotated with an
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Fig. 7. Figure (a) shows the conceptual storage tree for a 2-D tensor. Figure (b) shows the iteration graph for
tensor expression 𝐵𝑖+𝑗+𝑘,𝑙+𝑚 . A tensor path through an iteration graph summarizes how each index variable
in non-trivial index expressions are reduced to trivial ones (during reducing phase) before the tensor storage
is traversed from root to leaves (during resolving phase). Figure (c) shows a merged iteration graph for tensor
expression 𝐵𝑖+𝑗+𝑘,𝑙+𝑚𝐶𝑖, 𝑗,𝑘 .

additional S𝐵𝑖
at each node. Starting with the initial set collected from the tensor expression,

the elements in S𝐵𝑖
are gradually reduced after passing through vertices in the tensor path. For

example, S𝐵0
= {𝑖, 𝑗, 𝑘} is reduced to { 𝑗, 𝑘} after visiting vertex 𝑖 in the graph. The reduction of

an index variable signifies that the value of the index variable is determined. As such, the index

variable becomes invariant in any deeper nested loop. Analogous to the original iteration graph

definition [31], each node in the extended iteration graph corresponds to a loop in a loop nest to

coiterate over levels from different tensors.

We can conceptually partition the iteration graph into two subgraphs, namely the reducing and
resolving subgraph, by examining the number of remaining index terms in the current unresolved

index term set. We say that the subscript expression imposed on tensor dimension𝑇𝑙 is fully reduced
at a vertex of the iteration graph iff |S𝑇𝑙 |= 1, meaning that the compound subscript expression on

the dimension has been reduced to a trivial one. In figure 7 (b), the reducing phase refers to all stages

before vertex 𝑘 because they all have more than one remaining index variables in corresponding

S𝐵𝑖
, and the remaining stages together are considered resolving phase. Similarly, we say that the

subscript expression on a tensor dimension 𝑇𝑙 is fully resolved at a vertex of the iteration graph iff
S𝑇𝑙 = ∅, meaning that the result of its subscript expression is resolved to a known value (it locates

to a specific node in the tensor tree storage at that level). In figure 7 (b), 𝐵0 is fully resolved after
vertex 𝑘 , and 𝐵1 is fully resolved after vertex 𝑙 . Moreover, we call the incoming edge on a fully

reduced vertex a resolving edge, e.g.,𝑚 → 𝑘 and 𝑘 → 𝑙 in figure7 (b), and we call the rest reducing
edges. Under the new definition, it is clear that the original framework can only handle iteration

graph with only resolving edges (the resolving subgraph equals to the iteration graph itself).

Extended iteration graphs (with or without compound subscript expressions) can also be seam-

lessly merged to construct new iteration graphs for more complex tensor expressions (i.e., to handle

multiple tensor operands). It is important to note that our framework does not restrict the types
of edges being merged. That is, we allow merging arbitrary edges together regardless of whether

they are reducing or resolving edges. Merging reducing and resolving edges signifies that the

coiteration over sparse tensor dimensions (viz. resolving edges) need to satisfy additional index
reduction constraints (viz. reducing edges) as described in Section 3.1.2. In the example shown in
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figure 7 (c), merging 𝐵 and 𝐶 over 𝑖 means to iterate 𝐶0 with an additional constraint imposed by

the reducing edge from 𝐵0, i.e., to iterate𝐶 only when ∃ 𝑗∃𝑘 (𝑖′ + 𝑗 + 𝑘) ∈ {1, 2, 4}, in which 𝑖′ is the
concrete value of 𝑖 at the current iteration, and {1, 2, 4} are the specified elements in the first level

of B as shown in figure 7 (a).

The iteration graph can be constructed automatically for a given tensor expression. Tensor paths

with only resolving edges are constructed in the same way as in TACO [31]. To handle tensor

paths with reducing edges, we pick an arbitrary feasible index variable 𝑝 from the unresolved

index variable sets from each tensor level. The selected index variable represents the last index
variable to be resolved, and is used to ensure that levels of the same tensor are resolved in the same

order as its storage tree. In principle, the index variable resolving order can be picked arbitrarily.

That is, for index expression 𝑖 + 𝑗 , both 𝑖 → 𝑗 and 𝑗 → 𝑖 can be admitted and our code generation

algorithm can also handle “interleaved” paths such as 𝐵0{𝑖, 𝑘} → 𝐵1{ 𝑗, 𝑙} → 𝐵0{𝑘} → 𝐵1{𝑙}, in
which the two edges for 𝐵0 are interleaved by another edge for 𝐵1. In practice, we found that

different orders significantly affect the performance of the generated code (as shown and analyzed

in our experimental results). In this paper, we focus mostly on the code generation algorithm and

leave autotuning and finding the optimal loop schedule for future work.

Cycles occur in the iteration graph when an expression operates on tensors with incompatible

formats, such as adding a CSR matrix to a CSC matrix, since that would require ordering the row

index before the column index and vice versa. Such cycles can be resolved by inserting cycle-

breaking tensor transpose operations before the actual kernel, i.e. introducing some data movement

overhead in order to obtain the kernel for which efficient code can be generated. Here too, we leave

finding optimal cycle resolution for future work.

5 Code Generation
Section 5.1 introduces generalized merge lattices that handle compound subscript expressions.

We then describe in detail how subsect_next and subsect_begin can be computed and generated in

Section 5.2.

5.1 Generalized Merge Lattices
Merge lattices were introduced in [31] to handle the different types of merges of index variables

in different iteration graphs to coiterate levels from multiple tensors. The type of merge depends on

the property of the computation being generated. For multiplications, the merge is a conjunction

(∧) because it requires both operands to be non-zero to produce a non-zero result (both 𝑎 × 0 = 0

and 0 × 𝑏 = 0 and only 𝑎 × 𝑏 yields a nonzero result); for additions, the merge is a disjunction (∨)
since it requires only one non-zero operand to produce a non-zero result (𝑎 + 0 = 𝑎, 0 + 𝑏 = 𝑏, and

𝑎 + 𝑏 yields itself). The conjunctive and disjunctive merges represent the intersection and union of

sparse iteration spaces, respectively. To handle compound tensor index expressions, merges can

also be composed, e.g., (𝐴𝑖 + 𝐵𝑖 ) ×𝐶𝑖 → (𝐴𝑖 ∨ 𝐵𝑖 ) ∧𝐶𝑖 . The theory has been generalized [25] to

handle arbitrary fill values (other than non zeros) and arbitrary semi-ring operations. For simplicity,

we present our extension of merge lattices assuming non zeros to be the fill-in value and using

only additions for disjunctive merges and multiplications for conjunctive merges. However, our

approach can easily be adapted to the aforementioned fill values and semi-rings.

To handle the extra complexity introduced by merges of reducing edges, we keep a track of

unresolved index terms at the current stage such that the merge lattice becomes stateful: A pre-
and post-condition unresolved sets are attached at each lattice point. Given a tensor addition with

a compound subscript expression on 𝐶 as an example, Figure 8 (left) shows how the result 𝐴 is

computed from two operands 𝐵 and 𝐶: the value picked for 𝐴𝑖, 𝑗 is the result of either 𝐵 +𝐶 , 𝐵 or

𝐶 based on whether both 𝐵𝑖 and 𝐶𝑖+𝑗 , just 𝐵𝑖 or just 𝐶𝑖+𝑗 are specified with the given 𝑖 and 𝑗 . The
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1 int pb = B.pos [0];
2 subsect ss = subsect_begin(C, 0, 2);
3

4 while (pb<B.pos[1] && !subsect_end(ss)) {
5 int ic = ss.offset;
6 int ib = B.idx[pb];
7 int vb = B.val[pb];
8 int i = min(ic, ib);
9 if (ic == i && ib == i)
10 code_for A[ic][j] = vb + ss[j]
11 else if (ib == i}
12 code_for A[ic][j] = vb
13 else if (ic == i)
14 code_for A[ic][j] = ss[j]
15

16 if (ic == i) cs = subsect_next(cs, 0, 2);
17 if (ib == i) pb++;
18 }
19 while (pb < B.pos [1]) {
20 int vb = B.val[pb], ic = B.idx[pb];
21 emit_code A[ic][j] = vb
22 pb++;
23 }
24 while (subsect_end(ss)) {
25 int ic = ss.offset;
26 emit_code A[ic][j] = cs[j]
27 ss = subsect_next(cs, 0, up(j));
28 }

Fig. 8. Example merge lattice for tensor expression 𝐴𝑖, 𝑗 = 𝐵𝑖 +𝐶𝑖+𝑗 and the corresponding generated code.
The code segment and the corresponding node in the merge lattice are highlighted in the same color.

merge lattice constructed to merge index variable 𝑖 is shown in figure 8 (center). In this example, to

merge 𝐵0 and𝐶0 on index variable 𝑖 , we merge the specified index set for 𝐵0 and the offset set for𝐶0

to reduce 𝑖 from 𝑖 + 𝑗 , which is computed by I = {𝑖′ |∃ 𝑗 ∈ [0, 2) (𝑖′ ∈ [0, 4) ∧ (𝑖′ + 𝑗) ∈ {2})} = {1, 2}.
The arrow from a lattice point to another represents that either a coordinate set or offset set is

exhausted. E.g., 𝐵0{𝑖} ∧𝐶0{𝑖, 𝑗} → 𝐵0{𝑖} in Figure 8 (center) represents the case when there is no

non-empty subsections left to be extracted from 𝐶 .

Definition 5.1. A merge lattice L is a lattice that consists of 𝑛 lattice points 𝐿1, . . . , 𝐿𝑛 and a meet

operator. Associated with each lattice point 𝐿𝑝 is a set of tensor dimensions and its associated
unresolved index terms set, i.e., 𝑇𝑝 = {S𝑇0 = 𝑇0{𝑖, 𝑗, . . . }, S𝑇1 = 𝑇1{𝑖, 𝑘, . . . }, . . . }, to be merged

conjunctively (i.e. 𝑇0 ∧𝑇1 ∧ ...) and an expression to be evaluated. The meet of two lattice points

𝐿1 and 𝐿2 with associated tensor dimensions 𝑇1 and 𝑇2 respectively is a lattice point with tensor

dimensions 𝑇1 ∪𝑇2. We say 𝐿1 ≤ 𝐿2 if and only 𝑇1 ⊆ 𝑇2, in other words, if 𝐿2 has tensor dimensions

that are exhausted in 𝐿1 but not vice versa.

Figure 8 (right) shows the (simplified) code corresponding to the merge lattice. Each lattice point

corresponds to one while loop in the code, i.e., line 6-23 for 𝐵0{𝑖} ∧𝐶0{𝑖, 𝑗}, line 25-29 for 𝐵0{𝑖}
and line 31-35 for 𝐶0{𝑖, 𝑗}. Since 𝐵0{𝑖} ∧𝐶0{𝑖, 𝑗} dominates three more lattice points (including

itself), it leads to three cases inside the loop body on line 13-18. To handle the reduction of 𝑖 from

𝐶0{𝑖, 𝑗}, we iterate over the non-empty subsection set on line 6 and line 31, with 𝑖 reduced to the

offset on line 7 and line 32. In this case after the reduction, there are no tensor dimension with

more than one unresolved index terms, and the problem are now solvable by the existing theory

(on line 14, 15, 18, 27 and 33). The reduction can be done repetitively for more complex subscript

expressions.

Lattices can be optimized in a similar way as proposed in [31] by utilizing the fact that an

index reduction loop on a dense dimension yields a dense iteration space and applies the same

optimization rules.
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1 code -gen(index -expr , iv) // iv is the index variable
2 L = merge -lattice(index -expr , iv)
3 // initialize sparse pos variables
4 for Dj in sparse -dim(L):
5 ivs = unresolved -ivs(Dj, L);
6 if ivs.size() > 1:
7 d = dim(j) // the dimension that j tied to
8 // compute the subsection size.
9 s = sum(iv.bound() for iv in ivs.remove(j))
10 gen("auto ss {%0}{%1} = subsect_begin(D ,{%2} ,{%3})",D,j,d,s)
11 else: // falls back to TACO
12 taco -gen -pos -init (...)
13 for Lp in L
14 // while all merged dimensions have more values
15 emit "while("
16 for Dj in merged -dims(Lp):
17 if unreduced -ivs(Dj, L).size() > 1:
18 gen("!subsect_end(ss {%0}{%1})", D, j)
19 else:
20 taco -gen -pos -exhuast ()
21 emit ") {"
22 // inside loop body , initialize sparse idx variables
23 for Dj in sparse -dims(Lp):
24 if unresolved -ivs(Dj, L).size() > 1:
25 gen("int iv {%0}{%1} = ss {%0}{%1}. offset;", D, j)
26 else:
27 taco -gen -sparse -iv()
28

29 taco -gen -min -ivs()
30 taco -gen -dense -pos()
31 // one case per lattice point below Lp
32 for Lq in sub -lattice(Lp)
33 taco -gen -ivs -equals ()
34 for child -iv in children -in-iteraton -graph(iv)
35 code -gen(expression(Lq), child -iv)
36 taco -gen -compute ()
37 // conditionally increment the sparse pos variables
38 for Dj in sparse -dims(Lp):
39 if unresolved -ivs(Dj, L).size() > 1:
40 gen("ss {%0}{%1} = ss {%0}{%1}. next()", D, j)
41 else
42 taco -increase -sparse -pos()
43 gen("}")

(a)

1 int pb = B.pos [0];
2 // 2 as the upper bound of j
3 auto ssCi = subsect_begin(C, 0, 2);
4

5 // one loop per lattice point.
6 while (pb < B.pos[1] &&
7 !subsect_end(ssCi)) {
8 int ivCi = ssCi.offset;
9 int ivBi = B.idx[pb];
10 int vBi = B.val[pb];
11 int i = min(ic, ib);
12 // one case per lattice point.
13 // C[i+j] is reduced to ssCi[j]
14 if (ic == i && ib == i)
15 code_for A[ic][j] = vb + ssCi[j]
16 else if (ic == i)
17 code_for A[ic][j] = ssCi[j]
18 else if (ib == i}
19 code_for A[ic][j] = vb
20

21 // forwards to next slice.
22 if (ic == i) ssCi = ssCi.next();
23 if (ib == i) pb++;
24 }
25

26 while (pb < B.pos [1]) {
27 int vb = B.val[pb], ic = B.idx[pb];
28 code_for A[ic][j] = vb
29 pb++;
30 }
31

32 while (! subsect_end(ssCi)) {
33 int ic = ss.offset;
34 code_for A[ic][j] = cs[j]
35 ssCi = ssCi.next();
36 }

(b)

Fig. 9. (a) Recursive code generation algorithm extended from [31], only different parts are highlighted. (b)
Generated code for 𝐴𝑖, 𝑗 = 𝐵𝑖 +𝐶𝑖+𝑗 (tensor A, B and C are all sparse).

5.2 Algorithm
Pseudo-code for the recursive code generation algorithm is given in Figure 9. Compared to the

original algorithm described in [31], the new algorithm handles extra cases when the number of

unresolved index variables on a tensor dimension in the current lattice point is larger than one and

emits a subsection driven loop for those cases. In such cases, the extended algorithm generates:

• subsect_begin as the loop initialization condition (described in Section 5.2.1);

• subsect_next to forward the loop iteration (described in Section 5.2.2);

• subsect_offset as coordinates to co-iterate with other tensors.

• subsect_end to terminate the loop.

As described in Section 3.2, the offset of the subsection is memorized as metadata, thus

subsect_offset be trivially computed by a load. We describe the code generation algorithm for

the subsect_begin and subsect_next primitives in the following sections.

5.2.1 Finding the First Non-empty Subsection. The new primitive subsect_begin (T, D, Z) finds

the first non-empty subsection (the one with the smallest offset) extracted from tensor T along

dimension D with size Z. There are three basic cases as shown in Figure 10. Note that we treat T as

the initial tensor if it is the original tensor or extracted by fully resolved indices. This is because if
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Fig. 10. Three different cases to compute subsect_begin. (a) computes on the initial tensor; (b) computes on a
subsection of the initial tensor, both are extracted along the same dimension; (c) computes on a subsection
of the initial tensor but along different dimensions. ■ marks the stored elements included in the current
subsection. ■ marks the stored elements included in the parent subsection (if any).

.

all the index expressions on the previous dimension is fully resolved, they together locate a unique

node (as opposed to a range of possible nodes) in the sparse tensor storage tree. By treating the

uniquely located node as the new root of the tensor storage tree, the high-rank tensor is reduced

to a lower-rank tensor and we can then compute subsect_begin on the rank-reduced tensor in the

same way as if it is the original (unpruned) tensor.

All three cases are illustrated in Figure 10 using both CSR (with [dense, compressed] di-

mensions) and DCSR (with [compressed, compressed] dimensions) using the same technique

introduced in Section 3.2 to specify subsections of a sparse tensor. We explain all cases in detail in

the following paragraphs.

Extracting from the initial tensor: An example case is shown in Figure 10 (a). This might occur

when handling tensor index expression similar to 𝐴𝑖+𝑗,𝑘 and the loop being generated is to reduce

the first index variable from the subscript expression on the first dimension (say, reduce 𝑖 from 𝑖 + 𝑗

from 𝐴0).

To handle compressed dimensions, we copy the pair of position lower and upper bound (i.e.,

pos[i] and pos[i+1]) from the original tensor storage as shown in Figure 10 (a) (left). We do not

need to compute the position value because the first index (pointed by index[pos[i]]) must be

included in the first subsection and, as mentioned in Section 3.2, we do not require a tight upper

bound to specify the subsection (thus pos[i+1] can be directly reused). Assuming a sorted sparse

tensor, we can load the minimum index by index[pos[i]]. Then, the smallest positive offset for
the subsection that includes the minimum index is then determined by max(0, index[pos[i]] -
size + 1). In Figure 10 (a) (left), the offset for the first non-empty subsection is𝑚𝑎𝑥 (0, 0−2+1) = 0.
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1 // T: the input tensor; S: context to query subsections;
2 // L: the extracting dimension;
3 // depth: the number index variables already reduced.
4 func genSliceBegin(Tensor T, SliceInfo S,
5 Dimension L, int depth) {
6 // Generates vectors to hold the pairs.
7 gen("vector <pair <int , int >> pairs_ {%0}{%1};", L, depth);
8 // Simple case 1: Extracting on initial tensors.
9 if (L == 0 || S.resolved(L-1)) {
10 if (L == 0) gen("int pos = 0;");
11 else gen("int pos = {%0};", S.resolvedPos(L-1));
12 // Just need to push one pair.
13 gen("int pLo = T.pos_ {%0}[ pos];", L);
14 gen("int pHi = T.pos_ {%0}[ pos + 1];", L);
15 gen("pairs_ {%0}. push_back(pLo , pHi)", L);
16 return;
17 }
18 // Simple case 2: Extracting on the same dimension.
19 if (S.preExtractDim () = L) {
20 gen("pairs_ {%0}{%1} = pairs_ {%0}{%2}", L, depth , depth -1);
21 return;
22 }
23

24 // The first level that is either resolved or sparse
25 Level rootL = L - 1;
26 while(rootL > 0 && !S.resolved(rootL) && dense(rootL))
27 rootL --;
28

29 if (S.resolved(rootL)) {
30 gen("int pos = {%0};", S.resolvedPos(rootL));
31 } else {
32 if (dense(rootL)) {
33 gen("for (pos = {%0}; pos < {%1}, pos++)",
34 S.offset(rootL), S.bound(rootL));
35 } else {
36 gen("for (auto [pLo , pHi] : pairs_ {%0})", rootL);
37 gen("for (int pos = pLo; pos < pHi; pos++)");
38 // Generate break statement.
39 gen("if (T.idx_ {%0} >{%1}) break;",
40 rootL , S.bound(rootL));
41 }
42 }
43

44 // Fills up all dense unresolved levels in between.
45 for (int curL = rootL + 1; curL < L; i++) {
46 gen("for (i = {%0}; i < {%1}, i++)",
47 S.offset(curL), S.bound(curL));
48 // Linearizes dense position.
49 gen("int pos = pos * {%0} + i", T.dim(curL));
50 }
51 // Generates push_backs in a loop.
52 gen("int pLo = T.pos_ {%0}[ pos];", L);
53 gen("int pHi = T.pos_ {%0}[ pos + 1];", L);
54 gen("pairs_ {%d}. push_back(pLo , pHi)");
55 return;
56 }

(a)

1 // T: [Compressed , Compressed]
2 // Dimension 0: unresolved range: [0, 2)
3 vector <pair <int , int >> pairs_1;
4 for (auto [pLo , pHi] : pairs_0) {
5 for (int pos = pLo , pos < pHi; pos++) {
6 if (T.idx_0[pos] > 2) break;
7 pLo = T.pos_1[pos];
8 pHi = T.pos_1[pos + 1];
9 pairs.push_back(pLo , pHi);
10 }
11 }

(b)

1 // T: [Dense , Compressed]
2 // Dimension 0: unresolved range: [0, 2)
3 vector <pair <int , int >> pairs_1;
4 for (int pos = 0; pos < 2; pos++) {
5 pLo = T.pos_1[pos];
6 pHi = T.pos_1[pos + 1];
7 pairs_1.push_back(pLo , pHi);
8 }

(c)

1 // T: [Dense , Dense , Compressed]
2 // Dimension 0: unresolved range: [0, 2)
3 // Dimension 1: unresolved range: [0, 3)
4 vector <pair <int , int >> pairs_2;
5 for (int pos = 0; pos < 2; pos++) {
6 for (int i = 0; i < 3; i++) {
7 int pos = pos * 4 + i;
8 pLo = T.pos_1[pos];
9 pHi = T.pos_1[pos + 1];
10 pairs_2.push_back(pLo , pHi);
11 }
12 }

(d)

1 // T: [Compressed , Dense , Compressed]
2 // Dimension 0: resolved to pos = 1
3 // Dimension 1: unresolved range: [0, 3)
4 vector <pair <int , int >> pairs_2;
5 int pos = 1; /* resolved to 1 */
6 for (int i = 0; i < 3; i++) {
7 int pos = pos * 4 + i;
8 pLo = T.pos_2[pos];
9 pHi = T.pos_2[pos + 1];
10 pairs_2.push_back(pLo , pHi);
11 }

(e)

Fig. 11. (a) The code generation algorithm for subsect_begin (a) and (b) - (e) several sample code snippets
generated by the algorithm.

To handle dense dimensions, we use a sub-range determined by [offset, offset + size) to

specify the subsection. As shown in Figure 10 (a) (right), we initialize 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 0, 𝑠𝑖𝑧𝑒 = 2 to record

a dense sub-range.

Extracting from a subsection along the same dimension: The situation in Figure 10 (b) might occur

when handling tensor index expression similar to 𝐴𝑖+𝑗+𝑚,𝑘 . For example, 𝑖 is already reduced (thus

a subsection has already been extracted), and the current loop being generated is to reduce 𝑗 from

𝑗 +𝑚.

To handle compressed dimensions, we make a copy of the entire position array from the parent

subsections. The offset for the new subsection is re-evaluated similarly by offset = max(0,
min_index - size + 1) since the subsection’s size become smaller and the previous offset might

now be too small to include the minimum coordinate for the current size.
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To handle dense dimensions, we adjust the value of size and reuse the value of offset from
the parent subsection.

Extracting from a subsection along a different dimension: The case in Figure 10 (c) might occur

when handling tensor index expression similar to 𝐴𝑖+𝑗,𝑘+𝑚 . For example, 𝑖 is already reduced from

𝑖 + 𝑗 (thus a subsection has already been extracted to reduce 𝑖), and the current loop being generated

is to reduce 𝑘 from 𝑘 +𝑚. In this case, 𝑖 + 𝑗 and 𝑘 +𝑚 are subscript expressions defined on different

dimensions of 𝐴.

To handle compressed dimensions, depending on whether the previous unresolved level is dense

or compressed, different code need to be generated. In our approach, when an unresolved level is

compressed, the vector of position low and high pairs must have been initialized to specify the

sparse subsection. Thus, to span every pair of position low and high for the current dimension, as

shown in Figure 11 (b), we iterate over previous level’s pairs and for each coordinate that should

be included in the subsection, we insert the position low and high pair for the current dimension.

When the previous unresolved level is dense, the dense sub-range is specified by a pair of [offset,
size]. In this case, as shown in Figure 11 (c), we iterate over [offset, offset + size) to

populate every pair of positions ranges for the current level. At a high level, using the tensor

storage tree abstraction introduced in Section 3.2, the process can be analogous to spanning all

the child nodes from a set of parent nodes included in the subsection. The offset for the sparse

subsection at the current dimension can be similarly determined by offset = max(0, min_index
- size + 1).

To handle dense dimensions, we simply use offset = 0 together with user-provided size to
specify the dense subsection.

for pos in root:

  for i in [offset_i, offset_i + size_i):
    pos = linearize(pos, j)
    ...
    for j in [offset_j, offset_j + size_j):
      pos = linearize(pos, j)

      push_back(pos_k[pos], pos_k[pos + 1])

Unresolved dense
dimensions

(1) for i in [offset_0, offset_0 + size_0):
      pos = i;

(2) for [pos_lo, pos_hi] in pos_pairs:
      for pos in [pos_lo, pos_hi):
        if OOB(crd[pos]): break; 

(3) pos = resolved_pos

Fig. 12. The structure of generated code by Figure 11.

Detailed Algorithm: The detailed code gen-

eration algorithm is shown in Figure 11. Line

7-9 and line 19-20 describe cases similar to Fig-

ure 11 (a) and (b) respectively. Both cases are

simple and can be generated using boilerplate

code. The rest of the algorithm handles gen-

eral cases when there are unresolved parents

dimensions. Line 29-42 generates code struc-

tures to traverse the root level, which is either

the first level or the first non-unresolved dense
level. Line 45-50 fills all the dense sub-ranges

introduced by unresolved dense level between

the root level and the current level, and line 53-

55 generates the loop body to populate position

ranges for the current level. The generated code is structured in a similar way shown in Figure 12.

Figure 12 clearly shows that the size of the vector used to specified the current subsection and the

time complexity to compute subsect_begin is proportional to 𝑂 (∏𝑗

𝑖=𝑟𝑜𝑜𝑡
𝑠𝑖𝑧𝑒𝑖 ). For practical kernels

like convolutions, we find that depending on the picked loop ordering, it is possible to reduce all

𝑠𝑖𝑧𝑒𝑖 to 1, leading to an 𝑂 (1) time complexity to compute subsect_begin for convolutions.

5.2.2 Finding the Next Non-empty Subsection. Index-reduction loops forward the offset of the

current subsection in each iteration, which is computed by subsect_next. The process of computing

the offset of the next non-empty subsection is illustrated in Figure 13. Each case in Figure 13

computes the next non-empty subsection from the state in Figure 10 respectively.
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Fig. 13. Figure shows how subsect_next and the next non-empty slice’s offset can be determined in different
scenarios for each case in Figure 10. ■ marks the stored elements included in the current subsection. ■ marks
the expired elements after forwarding the current subsection.

At a high level, the computation of subsect_next consists of two steps:❶ expiring coordinates at the

boundary (i.e., those equal to the current subsection’s offset) and ❷ computing the new subsection

offset from the minimum coordinates after expiration. For the simple case in Figure 13 (a) and (b)

where only one pair of position range is needed to specified the subsection, the subsect_next is

computed as below:

pos = offset == crd[pos] ? pos + 1 : pos;
offset = max(offset + 1, crd[pos] - size + 1)

For example, in Figure 13 (a), since index0[0] = 0 and 0 = offset, the position lower bound

(0) increases to 1, and the minimum coordinates now becomes index0[1] = 2, leading to a new

non-empty subsection with offset = 1.
To forward an subsection that is extracted along a different dimension as the parent subsection

(Fig 13 (c)), there are multiple pairs of position range. For those cases, a loop is needed to repeatedly

expire coordinates and find the next smallest coordinates as there are multiple pairs of position

range. The generated code repeats the same computation to forward a single position value for

every expired coordinate and picks the minimal coordinates to determine the subsection offset.

Same as subsect_begin, the time complexity to compute subsect_next on a sparse dimension is

𝑂 (∏𝑗

𝑖=𝑟𝑜𝑜𝑡
𝑠𝑖𝑧𝑒𝑖 ).

To forward a non-empty subsection extracted from dense dimension, simply increase the offset

by one.

The index-reduction loop is terminated (i.e., subsect_end(S) evaluated to true) if the current

non-empty subsection is not fully contained by its parents, i.e., slice.offset + slice.size >
parent.size.
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5.2.3 Handling Coefficients. To handle compound subscript expressionwith constant coefficients(𝑐0·
𝑖 + ...𝑏), extra constraints are imposed on the subsections being visited. Since, by nature, induction

variables in sparse iteration theory only yield positive integer value, to ensure the satisfiability of

𝑐0 · 𝑖 + ...𝑏, we reduce the intercept, i.e., 𝑏, by first forwarding the subsection to the minimum offset

𝑓 such that 𝑓 ≥ 𝑏 and skipping subsections whose offset is not a multiple of 𝑐0, ..., inside the loop

generated to reduce 𝑖 , ..., respectively.

1 // Reduce b
2 sec = subsect_begin ()
3 while (!sec.empty() && sec.offset < b )
4 sec = sec.next()
5

6 // Reduce C0 x i
7 sec1 = subsect_begin(sec);
8 while (!sec1.empty() {
9 while (!sec1.empty() && sec1.offset % C0 != 0)
10 sec1 = sec1.next()
11 i = sec1.offset / C0;
12 ...
13 }

Fig. 14. Sample code to reduce coefficients.

Figure 14 shows explanatory loop structures

that are generated to handle constant coeffi-

cients and/or intercept in a subscript expres-

sion(as in 𝑐0 · 𝑖 + ...𝑏). The constant intercept

𝑏 is first reduced by forwarding the initial sub-

section between line 3-4 before generating any

loop nest to reduce index variables. Then one

loop is generated per index variable, and extra

conditions are generated (line 9-10) such that

only subsections with satisfied offsets are vis-

ited, e.g., checking sec1.offset % C0 != 0
to handle 𝑐0. Finally, 𝑖 , instead of being reduced

directly to subsect.offset, is reduced to offset / C0 at line 11.

5.2.4 Generalization to other formats. Being able to handle arbitrary combinations of dense and
compressed dimension formats (as described in Section 5.2.1 and 5.2.2) grants us the flexibil-

ity to handle a wide range of sparse formats including CSR ([dense, compressed]), DCSR
([compressed, compressed]), CSF [46] ([dense, compressed, compressed, ...]), etc. It
is also straight forward to extend the proposed algorithm to support dimension permutations to

handle, for example, column-major sparse matrices such as CSC (by constructing a column-first

iteration graph [32]). The algorithm to initialize and forward subsection-driven loops can also in

principle be extended to handle arbitrary dimension formats [9] as long as they are sorted so that

the merge coiteration algorithm applies. That is, the coordinates can be retrieved in the increasing

order (such that we can trivially compute the next smallest offset to forward the iteration).

To handle non-unique sparse dimensions (e.g., the non-unique singleton format used to encode

COO tensors [9]), an extra “deduplication” step is required to skip duplicate coordinates. That is,

instead of forwarding the next position by pos = pos + 1, we generate the following pseudo-code
to locate the position that points to a different coordinate for non-unique dimensions:

while (crd[pos] == cur_coord) { pos++; }

6 Experimental Evaluation
To demonstrate the advantage of the technique presented in the paper, we compare our work with

the most recent work, i.e., TACO-UCF on ResNet50 layers. We illustrate that our work is more

general than TACO-UCF and handles more sparse formats efficiently by showing that our method

is able to achieve:

• the same level of performance improvement when handling compound subscript expressions

on dense levels in Section 6.2.1, and

• significant speedups when handling compound subscript expressions on sparse levels in
Section 6.2.2.

To fully understand the potential performance benefits brought by sparsity, in Section 6.3, we

also extensively evaluate our work on a set of randomly generated sparse tensors with sparsity

ranging from 0% to 100% and compared the performance with the corresponding dense convolution
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Fig. 15. Performance comparison with TACO-UCF when running on ResNet50 layers (L1-L25) with input of
80% sparsity in DDDC format.

kernels. In Section 6.3.1, we further analyze the results and discussed the key factors that affect the

performance of the generated sparse kernels. The experiments focus solely on CPU code generation

and leave GPU support as future works.

In the following sections, for sparse formats without names, we use C as the abbreviation for a

compressed dimension and D as the abbreviation for a dense dimension. For example, DCC is short

for a list of [Dense𝑑0, Compressed𝑑1, Compressed𝑑2] dimension formats to store a 3-D tensor.

6.1 Methodology
To limit the scope of the evaluation, all experiments on convolutions are conducted with only sparse
inputs. This decision was made because we consider filter-sparse convolutions less interesting

to the contribution described in the paper, that is, there is no compound subscript expressions

imposed on filter tensors. Besides, filter-sparse convolution has already been supported for many

years in MLIR
§
.

All results are for single-threaded execution unless otherwise stated. Parallel results were obtained

using 20 threads. We ran all our experiments on a Google cloudtop with a two-socket, 64-core/128-

thread 2250 MHz AMD EPYC CPU that has 2 MB of L1 data cache, 32 MB of L2 cache, 256 MB of L3

cache and 512 GB of RAM. Most of the implementation of this work is open-sourced and available

as a part of the MLIR sparse compiler infrastructure [3]
¶
.

6.2 Comparison with TACO-UCF
6.2.1 Handling Dense Levels. Figure 15 shows the performance comparision between the sparse

kernel generated by our algorithm and TACO-UCF (when running with both single and multiple

threads) on ResNet50 [56]. Every layer of ResNet50 is a single 2-D convolution kernel with NHWC

input that computes 𝑂𝑛,ℎ,𝑤,𝑓 =
∑

𝑟

∑
𝑞

∑
𝑐 𝐼𝑛,ℎ+𝑟,𝑤+𝑞,𝑐𝐹𝑟,𝑞,𝑐,𝑓 with different shapes of input and filter

(when the kernel is strided, there are also extra constant coefficients on ℎ and/or 𝑤 ). In this

experiment, we use the exactly same input format (i.e., DDDC) and loop schedules (i.e., 𝑛 → ℎ →
𝑤 → 𝑟 → 𝑞 → 𝑐 → 𝑓 ) as the referenced paper [56] to evaluate our method.

§
https://reviews.llvm.org/D109783

¶
Except code related to parallelizations, which is open-sourced but has not yet been upstreamed the MLIR project by the

time of writing.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 281. Publication date: October 2024.

https://reviews.llvm.org/D109783


Compiler Support for Sparse Tensor Convolutions 281:19

0 20 40 60 80 100

0ms

5ms

10ms

15ms

20ms

90.4 90.9 91.4 91.9 92.4 92.9 93.4 93.9 94.4 94.9 95.4 95.9 96.4 96.9 97.4 97.9 98.4 98.9 99.4 99.9

2

4

■ MLIR (this work) ■ TACO-UCF ■ Speedup

2

4

8

16

32

1.8 1.9 1.9 1.9 2.1 2.2 2.1 2.1 2.3 2.6 2.6 2.7 2.9 3.2 3.3 3.5 3.5
4.4

5.3

19.5

Fig. 16. Peformance comparison and speedup over TACO-UCF when running on the first layer of ResNet
using DCCC format. The left part of the figure shows the performance comparison with input sparsity ranging
from 0% to 100%. The right part of the figure shows the detailed performance comparison with input sparsity
ranging from 90.4% to 99.9%. All input sparse tensors are randomly generated to simulate the random
activation produced by the network. Speedup are plotted in log scale.

On most layers, MLIR performs slightly better than TACO-UCF in both single and multi-thread

settings but we also observed that MLIR performs noticeably worse at layer 14 when running in

parallel. However, it is important to note that our algorithm actually generates logically equivalent
code as TACO-UCF when inputs are in DDDC format. This is because, as indicated by the NHWC

convolution formula, when inputs are in DDDC format, compound subscript expressions are only

imposed on dense levels (i.e., 𝐷𝑛𝐷ℎ+𝑟𝐷𝑤+𝑞𝐶𝑐 ). In that case, both algorithms generate dense loops

to reduce an index variable. Thus, the performance differences reported in Figure 15 are mostly due

to different generated target language (MLIR vs C++) and/or async runtimes (clang libomp vs gcc
∥

libomp) instead of advantages brought by the code generation algorithm. The experimental results

indicate that our method provides the same level of performance boost as the state-of-the-art when

handling dense levels.

6.2.2 Handling Sparse Levels. The advantage of our algorithm becomes more obvious when the

input becomes more sparse and DDDC is no longer the optimal format to compress the tensor

(multiple dense levels lead to low compress ratio). Because of a more efficient handling on compound

subscript expressions imposed on sparse levels, the generated code by the proposed algorithm is

able to fully exploit the sparsity of the input data and thus achieve significant speedup.

Figure 16 reports the execution time of generated sparse kernels by TACO-UCF and MLIR and

plots the speedup of MLIR over TACO-UCF when computing the first layer of ResNet
∗∗
using

DCCC as the input format. As shown in the left part of Figure 16, MLIR consistently outperforms

TACO-UCF when handling DCCC format. The performance gap also becomes more obvious as the

input sparsity increases. In the right part of Figure 16 for sparsity ranging from 90.4% to 99.9%,

. MLIR improves the performance by at least 1.8×. Besides, the speedup over TACO-UCF also

dramatically increases as the sparsity of the input tensor increases and reaches 19.5× at 99.9%

sparsity.

As shown in Figure 16, the sparse kernel generated by TACO-UCF does not show significant

speedup as the input sparsity increasing until 98.4% sparsity. As the input sparsity increases from

90.4% to 98.4%, the kernel execution time of TACO-UCF only reduces from 3.8 ms to 3.1 ms (i.e.,

1.2× speedup). On the other hand, the execution time of the sparse kernel generated by MLIR

∥
TACO-UCF should also have a slightly better performance when the generated code is compiled by icc (which has been

deprecated by Intel) instead of gcc [56]

∗∗
We altered the shape of the input tensor from 1 × 112 × 112 × 64 to 1 × 256 × 256 × 64 because TACO-UCF crashed when

computing DCCC inputs with the original shape.
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Fig. 17. Runtime (in ms) comparison between sparse and dense (1D-3D) convolutions under different loop
schedules.

dramatically reduces from 2.1 ms to 0.86 ms (i.e., 2.4× speedup) for the same sparsity range. When

the input becomes “hyper-sparse” (i.e., ≥ 98.9%), despite a noticeable performance improvement

also observed in TACO-UCF generated kernels, the performance gap between MLIR only becomes

larger and larger as input sparsity increases.

The reason behind the improvement is explained in Section 2: Since TACO-UCF generates a

dense outer loop to reduce a index variable from compound subscript expressions (even for sparse

levels), the benefit brought by sparsity is not fully exploited. While TACO-UCF does sparsify the

inner loop, the sparse inner loop also introduce more branch instructions (to search the start

position) and makes the loop bound harder to predict compared to dense loops. The irregular sparse

loop hinders the instruction-level parallelism (ILP) and might shadow the performance benefit

brought by sparsity, which is why the performance improvement of TACO-UCF is limited as input

sparsity increases from 90.4% to 98.4%. The experiment clearly shows that our approach is more

general than state-of-the-art, and can efficiently handle a much wider range of sparse formats.

6.3 Improvement Over Dense Kernels
To understand the performance benefit and/or penalty brought by sparsity under different formats

and loop schedules, we compared the performance of the generated sparse convolution kernels
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Fig. 18. Number of cache references, cache misses, executed branch instructions and branch mispredictions
collected from 1D convolution with different loop schedules.

against the corresponding dense kernels (compiled also by the MLIR compiler). The inputs to the

convolution kernels are randomly generated in uniform distribution with sparsity ranging from 0

to 100 (with 100 being completely sparse). The input sizes for 1-D, 2-D and 3-D convolutions are

999999, 999 × 999 and 99 × 99 × 99 respectively; the filter sizes for 1-D, 2-D and 3-D convolutions

are 3, 3 × 3 and 3 × 3 × 3 respectively (which are typical shapes of filter tensors used in practice).

Figure 17 shows the collected result. As shown in the figure, different choices of loop schedules

dramatically affect the performance of the generated sparse convolution kernels. For half of the

schedules (as in Figure 17 (b), (e), (f), (j), (k) and (l)), the execution time reduces linearly as the

input sparsity increases and the sparse implementations begin to outperform the dense ones at

∼ 80% sparsity. For the remaining loop schedules, the generated sparse kernels are slower and

start to outperform the dense ones at around 80%-98% sparsity. Despite of the impact brought by

loop schedules, all generated sparse kernels, except Figure 17 (g), achieve 2×-10× speedup over

dense ones at 99% sparsity regardless of different sparse input formats, showing the efficiency and

generality of our code generation algorithm when dealing with different formats.

6.3.1 Performance Analysis. Curious readers might wonder about the cause of unexpected curves

reported in Figure 17 (a), (c), (d), (g), (h) and (i), in which the performance of the sparse implemen-

tation becomes worse as the sparsity of input increases from 0% to around 40%. To understand

the cause of the unexpected performance degradation as inputs become sparser, we collected and

plotted the number of cache accesses, cache misses, branch instructions and branch mispredictions

in Figure 18 when running 1-D sparse convolutions with two different loop schedules.

Figure 18 shows that the number of cache references and executed branch instructions both

decrease as the input become sparse, indicating the time complexity of the generated kernels are

indeed proportional to the number of non-zeros stored in the input. Despite that schedule 𝑖 → 𝑝

performs worse than 𝑝 → 𝑖 as reported in Figure 17, it actually makes approximately 3× less cache

accesses and has fewer cache misses because the intermediate result of summation to calculate

∑
𝑝

is promoted to registers. On the another hand, schedule 𝑖 → 𝑝 results in executing more branch

instructions and from the figure, the correlation between the number of misprediction and the

kernel execution time (reported in Figure 17 (b)) is obvious. Since branch misprediction introduces

control hazards that significantly affect instruction-level parallelism (ILP), as the number of branch

mispredictions dramatically increases, it dominates the performance and the penalty brought by

misprediction outweigh the benefit brought by sparsity, causing the performance degradation

reported in Figure 17.

A deeper look into Figure 17 indicates that all loop schedules leading to performance degradation

end with a reduction loop bounded by the shape of filter tensors, that is, loops to resolve p, q,
r for 1-D, 2-D, 3-D convolution respectively. On the other hand, the remaining schedules all end
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𝑖 → 𝑝 𝑝 → 𝑖
1 // Subsection with the size of filter vector
2 auto sub = subsect_begin(T, 0, |p|);
3 while (!sub.empty()) {
4 int i = sub.offset;
5 while (auto [p, val] : sub) {
6 if (p >= |p|) break; ... }
7 sub = subsect_next(sub); }

1 // Subsection with the size of output vector
2 auto sub = subsect_begin(T, 0, |i|);
3 while (!sub.empty()) {
4 int p = sub.offset;
5 while (auto [i, val] : sub) {
6 if (i >= |i|) break; ... }
7 sub = subsect_next(sub); }

Fig. 19. Pseudo-code to compute 1D convolution with different loop schedules (in our experiment |𝑖 | = 999997

and |𝑝 | = 3).

with a parallel loop bounded by the shape of output tensors (i.e., loop i, j, k for 1-D, 2-D, 3-D
convolution respectively). Using 1-D convolution as the example, the corresponding pseudo-code

to compute Figure 17 (a) and (b) are shown in left and right of Figure 19 respectively. As described

in Section 3.1, to reduce 𝑖 (or 𝑝) from 𝐼𝑖+𝑝 , our algorithm constructs non-empty subsection driven

loop to iterate over non-empty subsections with size 𝑝 (or 𝑖) as the outer loop (L3 in Figure 19),

and co-iterate the subsection with the filter vector in the inner loop (L5 in Figure 19) to resolve the

remaining index variable. For 1-D convolution, since the subsection is extracted from the input

tensor and there is no unresolved subscript expression on previous dimensions, subsect_next can be

computed in O(1) for both schedules (as described in Section 5.2.2), thus the generated code share

the same time complexity. However, extra branches to handle sparse input are introduced at L9

in Figure 19 inside subsect_next (as described in Section 5.2.2). Note that in our experiment setting

where |𝑖 | ≫ |𝑝 |, schedule 𝑖 → 𝑝 extracts a much smaller subsection (of size |𝑝 |) at L2 in Figure 19

than schedule 𝑝 → 𝑖 , which means that compared to schedule 𝑝 → 𝑖 , schedule 𝑖 → 𝑝 are more

vulnerable to branch misprediction because:

• it has much more non-empty subsections to iterate over and thus executes subsect_next for

much more times, which introduces more branches to predict; and

• It is harder to predict the branch at L6 in Figure 19 correctly when the subsection is smaller

and there are much fewer overlapped elements between consecutive subsections.

For the generated kernel, the branching result is mostly determined by the pattern of the input data.

When the input is relatively dense and there are more consecutive non-zeros in inputs, the number

of misprediction is lower and thus leading to better performance. Since we generated our input

completely in random for the experiment with no pattern, it results in a significant increase of the

number of branch mispredictions, which overtakes the performance benefit brought by sparsity

and leads to performance degradation. However, as we will show in Section 6.3.2, when evaluating

on more structured matrices, the performance gap between different schedules can become much

smaller.

6.3.2 Choice of Loop Scheduling. It might appear obvious from Figure 17 that we should always

avoid an innermost loop bounded by the shape of filter matrix for convolutions to mitigate the

performance penalty brought by branch misprediction. However, taking 1D convolution (𝐴𝑖 =∑
𝑝 𝐼𝑖+𝑝𝐹𝑝 ) as the example for simplicity, there are also advantages of schedule 𝑖 → 𝑝 over schedule

𝑝 → 𝑖:

• Since the output tensor is indexed by 𝑖 (i.e., 𝐴𝑖 ), it is essential to have loop 𝑖 as the outermost

loop in order to produce results in lexicographical to directly output a sorted sparse tensor.

Otherwise, a large workspace [30] need to be allocated.

• Since 𝑝 is a reduction loop and 𝑖 is a parallel loop, rotating loop 𝑝 out of loop 𝑖 introduces

data dependencies on out[i] (L10 in Figure 19) across different iterations over 𝑝 , making

the outer loop hard to be parallelized and/or tiled.
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Fig. 20. Normalized execution time of the generated 2D convolution kernels (i.e., 𝐴𝑖, 𝑗 =
∑
𝑝

∑
𝑞 𝐼𝑖+𝑝,𝑗+𝑞𝐹𝑝,𝑞)

with different schedules on the same matrix. The top half of the figure shows three matrices collected from
SuiteSparse [11] with more predictable patterns. The bottom half of the figure shows the results when running
sparse convolution on the entire sketch dataset [15] (with 20k samples) and the (normalized) average runtime
for different schedules. In this experiment, the generated code produces a dense output and takes a CSR
input.

Apart from the above reasons, different loop schedules might also have comparable performance

when inputs have a more predictable sparse pattern. We picked three matrices with obvious pattern

from the SuiteSparse Matrix Collection [11] and Figure 20 shows the normalized execution time

of 2-D sparse convolution when running on the selected matrices. Among those picked matrices,

bcsstk27 has a typical pattern where most non-zeros appears near the diagonal; denrimer is a

symmetrical matrix with a more complex pattern; orani678, while appears random, has most of

its non-zeros clustered into blocks. As indicated by Figure 20, when running on bcsstk27, the
performance gap between different schedules are almost negligible because of the simple input

sparse pattern. The biggest slowdown (1.41×) is reported when running on dendrimer, which has

∼ 88% sparsity. At the same time, when running the same kernel on randomly generated inputs

with the same level of sparsity, our previous experimental result reported in Figure 17 shows a

∼ 10× slowdown.

When running the generated convolution kernel on real-world sparse images (e.g., for sketch

recognition), we found that the performance difference caused by uses of different loop orders

is also small. This is because strokes in sketches are typically spatially adjacent, leading to more

predictable patterns. The bottom half of Figure 20 shows the comprehensive results when running

the generated sparse convolution kernels on all 20k samples in the sketch dataset [15]. As shown in

the (middle) scatter plot in Figure 20, despite the chosen loop order, all generated sparse kernels are,

on average, at least 2x faster than the dense implementation. While the loop order 𝑖 → 𝑝 → 𝑞 → 𝑗

consistently yields the best performance, the performance gaps between other loop orders are much

more negligible (compared to those collected on randomly generated sparse inputs). As shown

in the bottom right of Figure 20, sub-optimal orders are at most 1.10× slower than the loop order

𝑖 → 𝑝 → 𝑞 → 𝑗 .
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The choice of loop schedules can also leads to different memory overhead introduced by for-

warding a subsection as explained in Section 5.2.1. Using 2D convolution 𝐴𝑖, 𝑗 =
∑

𝑝

∑
𝑞 𝐼𝑖+𝑝,𝑗+𝑞𝐹𝑝,𝑞

as the example, schedule 𝑝 → 𝑞 → 𝑖 → 𝑗 requires an extra𝑂 (𝑖) buffer to maintain and forward the

subsection. It is because when reducing 𝑝 from 𝑗 + 𝑝 , which is the subscript expression imposed at

𝐼1, index variable 𝑖 still remains unresolved at the previous dimension 𝐼0. On the contrary, schedule

𝑖 → 𝑝 → 𝑗 → 𝑞 requires only 𝑂 (1) extra memory since both 𝑖 and 𝑝 at 𝐼0 has been reduced before

handling 𝑗 + 𝑝 at 𝐼1.

While the impact of different loop schedules is significant for the generated sparse kernel, we

focus mainly on the code generation algorithm in this paper and leave the search for the optimal

schedule under different configurations as a future work.

7 Related Work
This section discussed related work, organized by traditional work on convolutions and stencil

computations and compilation systems for sparse tensor algebra.

7.1 Convolutions and Stencil Computations
Convolutions form a central concept in signal and image processing as a means to translate two

input signals to a, usually simpler, output signal [8]. For example, a small kernel matrix can be

applied to a larger matrix in order blur an image or detect edges [47]. More recently, convolutions

have become very popular in machine learning as a means of extracting features, like finding

important properties in an image. In the context of deep learning, a Convolutional Neural Network

(CNN) refers to a neural network that is able to learn feature engineering by itself. Early examples of

these hand-written zip codes recognition [12] or phoneme recognition to discover acoustic-phonetic

features[54].

Stencil computations are closely related to convolutions, since they also update tensors according

to a fixed pattern, called a stencil [10]. Finding the solution to partial differential equations often

results in regular or irregular stencil computations [48]. Stencils are also widely used in image

processing and has been studied for decades. Frigo and Strumpen proposed a cache oblivious

algorithm for stencil computation [18]. Krishnamoorthy et al. proposed an overlapping tiling

strategy [34] to improve locality. By removing inter-tile dependencies, it also enables additional

concurrency. The Pochoir compiler [50] transfers a serial code into a parallel one using a two-phase

approach, where the programmer compiles the source program using the Pochoir template library,

and then in the second phase, the programmer runs Pochoir compiler to perform a source-to-source

translation. Halide [45] proposed a new domain-specific language (DSL) for the complex image

processing pipelines that decouples the algorithm definition from its execution strategy to improve

portability and composability, for dense array programs.

7.2 Sparsity in Neural Networks
Sparsity in neural networks is becoming a increasingly important topic. A review of sparse expert

models by William Fedus, Jeff Dean and Barret Zoph concludes that "As the scale of machine

learning systems has increased, the field has sought more efficient training and serving paradigms.

Sparse expert models have risen as a promising solution.” [17]. Many networks are also known to

produce sparse activation by nature. For example, ResNet [24], due to the use of ReLU [41] layers,

produces sparse activation of more than 90% sparsity [40]. Sparsity can also be introduced into the

network by pruning [23, 37] to increase model efficiency while achieve comparable accuracy at the

same time [58].
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7.3 Sparse Tensor Algebra Compilation
Bik and Wijshoff were the first to propose treating sparsity as a property and using a sparse

compiler to generate sparse code from a sparsity-agnostic definition of the computation [4–7] and

implemented the MT1 compiler to convert dense computations to the corresponding sparse ones.

The Vienna-Fortran sparse extensions [52] enables programmers to characterize a matrix as sparse.

The Bernoulli project [33, 39] generates efficient sparse matrix code from HPF dense loops through

relational algebra to enumerate the dense iterate space as a Cartesian product. Sparsity is later

introduced as predicates in filters that are then turned into relational joins, whose implementation

are selected from a set of hand-coded libraries. Strout, Hall, and Olschanowsky developed the Sparse

Polyhedral Framework [49], which combines polyhedral compilation with an inspector-executor

approach to data inspection. The frameworks showed how sparse computation can be optimized

using polyhedral techniques with uninterpreted functions to model non-affine memory accesses

(e.g., accessing using coordinates loaded from a sparse tensor storage A[crd[pos]]) but don’t
currently support convolutions.

Most recently, sparse compilation was formalized and generalized to sparse tensor algebra

in TACO [28–31] with a comprehensive sparse iteration theory. The MLIR sparse compiler in-

frastructure [3], built on top of the TACO-like iteration theory, provides an industrial-strength

implementation. SparseTIR [57] further introduces an extra optimization layer in a sparse compiler

and uses composable formats and transformations for performance tuning. Despite of all the recent

advances in the field of sparse compilation, asymptotically optimal compiler support to handle

compound subscript expressions imposed on sparse tensors remains an open problem. This paper

tackles that challenge.

7.4 Sparse Convolutions
Researchers have also explored exploiting sparsity for convolutions. To exploit sparsity in the

convolution filter (kernel), XNNPACK [16] implemented a im2col-based approach which transfers

sparse convolution into SpMM. SkimCaffe [38, 43] implemented direct sparse convolutions. How-

ever, both library-based approaches share a common limitation: the algorithm is hard to generalize

and only limited sparse formats are supported. The MLIR sparse compiler also supported filter-

sparse convolution through a compiler-based approach [1]. We consider filter-sparse convolutions

irrelevant to the contribution of this paper because there is no compound subscript expression

imposed on a sparse tensor.

Aside from sparse filters, activations can also be sparse in a Convolutional Neural Network.

Notably, the employment of Rectified Linear Unit (ReLU) activation function [19, 20] is known

to induce sparse activations [40, 42]. SparseTrain [22] proposed a vectorzied implementation to

leverage the dynamic activation sparsity introduced by ReLU by still using a dense representation

for the sparse activation but avoiding unnecessary computation through vectorized zero checks.

DeepSparse [35], on the other hand, adopted a "3-array" CSR-variants to compress the sparse

activation.

Recently, multiple compiler-based approaches have also been proposed to handle direct convolu-

tion with sparse input. TACO-UCF [56] proposed a unified framework that is able to automatically

generated code for many convolution variants, however, as shown in this paper, their approach

failed to handle compound subscript expressions imposed sparse dimensions efficiently. Looplets [2],

which proposed a language to describe structural coiteration, is also able to describe a sparse con-

volution kernel. However, the generated code requires a binary search to locate the start of each

subsection, leading to a sub-optimal performance.
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7.5 Optimizing Unstructured Sparsity
As also indicated in this paper, unstructured sparsity imposes extra challenges to generate efficient

sparse kernel due to high branch mispredication rate, bad cache locality, etc. Many recent works [13,

26, 55] attempt to address this issue by generating "customized" sparse kernel according to a pre-

analysis on the sparsity pattern of a particular input tensor. To generate more efficient SpMM

kernels with unstructured sparsity, Wilkinson et al. proposed Sparse Register Tiling [55], which uses

a solver to find the best unroll-and-sparse-jam transformation. To reduce the branch misprediction

rate, sparse register tiling analyzes and compresses the matrix using the provided schedule as a part

of the pre-processing phase. Similarly, Horro et al. [26] proposed a custom method to generate a

specialized efficiently vectorized program for the particular sparsity structure of an input matrix to

compute SpMV kernels. Dezfuli and Cheshmi [13] proposed a tile fusion strategy to enable fusing

GeMM-SpMM and SpMM-SpMM kernels. In their work, the scheduler also chooses the schedule

based on the sparsity pattern of the input. While the mentioned systems in this section are not

directly related to our work, the similar strategy (i.e., running a pre-analysis on the input sparsity

pattern to guide compiler optimizations) might be adopted in the future to help generating more

efficient sparse convolution kernels.

8 Conclusions and Future Research
The paper introduces a new code generation algorithm to handle tensor index expressions with

compound subscript expressions on sparse tensors efficiently, which enables compiler support for

complex kernels like sparse convolution. The resulting compiler generates much more efficient

sparse convolution kernel than state-of-the-art compiler-based solution on CPU. The proposed

method lays the foundation to generate efficient sparse convolution kernels and we believe that

it enables future research to further optimizing the generated kernels including more extensive

parallelization, vectorization, GPU code generation, automatic scheduling, etc.
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