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Abstract—We introduce SpDISTAL, a compiler for sparse
tensor algebra that targets distributed systems. SpDISTAL com-
bines separate descriptions of tensor algebra expressions, sparse
data structures, data distribution, and computation distribution.
Thus, it enables distributed execution of sparse tensor algebra
expressions with a wide variety of sparse data structures and data
distributions. SpDISTAL is implemented as a C++ library that
targets a distributed task-based runtime system and can generate
code for nodes with both multi-core CPUs and multiple GPUs.
SpDISTAL generates distributed code that achieves performance
competitive with hand-written distributed functions for specific
sparse tensor algebra expressions and that outperforms general
interpretation-based systems by one to two orders of magnitude.

Index Terms—Computer Science, Programming, Parallel Pro-
gramming

I. INTRODUCTION

Sparse tensor algebra is ubiquitous and has applications
across many fields, including scientific computing, machine
learning, and data analytics [1]–[5]. These application domains
operate on ever-increasing amounts of data, and can benefit
from the growing compute and memory offered by modern
distributed machines. However, efficiently utilizing distributed
machines for sparse computations remains difficult.

We present SpDISTAL, a system that compiles sparse tensor
algebra to distributed machines. SpDISTAL allows for inde-
pendent descriptions of how data and computation should be
mapped onto the memories and processors of a target machine.
Figure 1 shows C++ code implementing a distributed SpMV
using SpDISTAL. Lines 12-22 describe the sparse format and
data distributions of tensors through a format language, and
lines 30-39 describe a row-based distribution strategy through
a scheduling language. These separate languages for data and
computation allow for independently changing the data format
or distribution and the algorithm to distribute the computation.

Efficient kernel implementations for sparse tensor algebra
operations can be complex, even on a single thread. Distributing
these computations makes it even harder to ensure correctness
and performance. There are two modern approaches to tackling
this complexity: a library of kernels and interpretation. Exam-
ples of libraries of hand-written kernels include PETSc [6]–[8]
and Trilinos [9], [10]. An example of an interpretation-based
system is the Cyclops Tensor Framework (CTF) [11], [12].

Library approaches, such as PETSc and Trilinos, implement
a predefined set of operations, each with a fixed data format

and distribution strategy. These systems provide bare-metal
performance but are inflexible in the face of three sources
of variability. First, the fixed set of implementations in a
library means that the implementation of some the countably
infinite set of tensor algebra expressions using these building
blocks will be suboptimal, and in practice there are important
computations that incur such a performance penalty. Second,
when users have a data distribution or data format not directly
supported by the system, they must reshape their data to fit
the interface, incurring significant cost. Finally, the library
approach is difficult to adapt to new hardware, as each kernel
must be rewritten and re-tuned for each new platform.

Interpreted approaches, such as CTF, execute a tensor algebra
expression using a series of distributed matrix multiplication
and transposition operations. This approach can implement
all tensor algebra expressions, but cannot achieve optimal
performance for all expressions. Our experiments show that
the interpreted approach can be one to two orders of magnitude
slower than hand-tuned implementations due to unnecessary
data reorganization and communication. Through compilation,
SpDISTAL achieves the benefits of both approaches, supporting
the full generality of sparse tensor algebra but also specializing
implementations to the desired computation and data layouts.

The recent work of DISTAL [13] introduced separate schedul-
ing and data distribution languages for distributed dense tensor
algebra compilation, making it capable of expressing a large
variety of dense tensor algebra algorithms. However, DISTAL
has no notion of sparsity in its language or implementation.

We address adding sparsity into DISTAL’s programming
model in a way that is separated from but also composes well
with the scheduling and data distribution languages, allowing
SpDISTAL to express a wide range of distributed sparse
tensor algebra algorithms. We show how to add sparsity to
DISTAL’s scheduling and data distribution languages in a way
that is expressive and composable. We then show how to
leverage dependent partitioning [14] to translate tensor algebra
expressions and data distribution declarations with sparsity
specifications into assignments of specific sub-tensors to a
distributed machine.

Figure 1 demonstrates how sparsity is integrated into DIS-
TAL’s programming model in an encapsulated manner. Line 16
declares that the matrix in a matrix-vector multiplication is
sparse. Apart from the sparsity annotation, the remainder of
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1 // Declare input parameters for generated code.
2 Param pieces, n, m;
3 // Define the machine M as a 1D grid of processors.
4 Machine M(Grid(pieces));
5
6 // Define the data structure and distribution for
7 // each tensor. We define two dense vector formats,
8 // one blocked onto M, the other replicated onto all
9 // processors in M. Finally, we define a CSR matrix

10 // format, distributed row-wise. The format notation
11 // is discussed in Subsection II-B.
12 DistVar x, y;
13 Format BlockedDense({Dense}, Distribution({x}, M, {x}));
14 Format ReplDense({Dense}, Distribution({x}, M, {y}));
15 Format BlockedCSR({Dense, Compressed},
16 Distribution({x, y}, M, {x}));
17
18 // Create our tensors, using the defined formats. Our
19 // SpMV algorithm will block a and B, and replicate c.
20 Tensor<double> a({n}, BlockedDense);
21 Tensor<double> B({n, m}, BlockedCSR);
22 Tensor<double> c({m}, ReplDense);
23
24 // Declare the computation, a matrix-vector multiply.
25 IndexVar i, j;
26 a(i) = B(i, j) * c(j);
27
28 // Map the computation onto M via scheduling commands.
29 IndexVar io, ii;
30 a.schedule()
31 // Block i for each node.
32 .divide(i, io, ii, M.x)
33 // Distribute each block of i onto each node.
34 .distribute(io)
35 // Communicate the needed sub-tensor for each chunk of i.
36 .communicate({a, B, c}, io)
37 // Schedule the leaf computation that runs on each node.
38 // Here, we parallelize chunks of i over CPU threads.
39 .parallelize(ii, CPUThread);

Figure 1: Distributed CPU SpMV kernel in SpDISTAL.

Figure 1 is a valid DISTAL program that implements a row-
wise distributed matrix-vector multiplication. SpDISTAL allows
for independent description of the sparsity structure of tensors
to yield distributed sparse tensor computations.

We implement SpDISTAL by extending the DISTAL [13]
and TACO [15] compilers and targeting the Legion [16]
distributed runtime system. SpDISTAL implements sparsity in
the model through a combination of compilation techniques
and runtime analysis, avoiding the need to perform complex
control and data flow analyses over imperative code.

The specific contributions of this work are:
1) A programming model that separates data distribution

and computation distribution for sparse tensors,
2) a data structure specification language separated from

data distribution specifications, and
3) compilation techniques to support distribution of sparse

tensor algebra computations.
We evaluate SpDISTAL by comparing against the state-of-

the-art distributed sparse linear and tensor algebra libraries
PETSc, Trilinos and CTF on matrices and tensors from the
SuiteSparse [17], FROSTT [18] and Freebase [19] datasets. We
find that SpDISTAL is competitive with PETSc and Trilinos,
and can outperform CTF by over an order of magnitude.

II. PROGRAMMING MODEL

The first contribution of SpDISTAL is a programming model
that combines sparse data structure specifications with separate
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Figure 2: Overview of SpDISTAL’s contributions.
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Figure 3: Different encodings of a sparse matrix in TACO’s
format language. Blue squares indicate how the coordinate
(1,3) is represented by each encoding.

data and computation distribution languages. Figure 1 utilizes
the three input sub-languages of SpDISTAL to implement a
distributed SpMV: a computation language that describes the
desired kernel (line 26), a format language (lines 12-22) that
describes how input tensors store non-zeros and are distributed
onto a machine, and a scheduling language (lines 30-39) that
describes how to optimize and distribute the computation.
Components of these input languages have been proposed by
prior works, as discussed in the next few sections. However, the
first key contribution of SpDISTAL is the novel combination
of these languages to support distributed sparse tensor algebra.

A. Computation Language

Computation is described in SpDISTAL using tensor index
notation (TIN). We adopt the concrete syntax of TACO [15]
and DISTAL [13] for TIN. TIN consists of accesses that index
tensor dimensions with lists of index variables. TIN statements
are assignments into a left-hand side access, while the right
hand side is an expression constructed from multiplication and
additions between any number of accesses. For example, the
tensor-times-vector operation is expressed in TIN as A(i, j) =
B(i, j, k) ·c(k), declaring that each element A(i, j) is the inner
product between the final dimension of B and the vector c.
Intuitively, each distinct index variable corresponds to a loop,
and variables contained only in the right-hand side of the
assignment represent sum-reductions over their domain.

B. Format Language

Sparse Data Structures. SpDISTAL adopts the format
language of TACO [15], letting users control tensor data
structures and thus how zero entries are compressed. TACO’s
format language allows users to specify the format used to store
each dimension of a sparse tensor. Two formats considered in
TACO are the Dense and Compressed formats. A k-dimensional
tensor is stored using any combination of k instances of these
formats. A Dense format represents a standard array containing
all coordinates of the dimension. A Compressed format encodes
only the non-zero coordinates of the dimension using two
arrays: a crd array that stores the non-zero coordinate values
and a pos array that stores the range of coordinates associated
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(a) Blocked vector distribution.
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(b) Row-wise matrix distribution.
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(c) Tiled matrix distribution.
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(d) Map 3-tensor onto proc. grid.

Figure 4: Examples of tensor distribution notation statements.1

with each entry in the previous dimension. Figure 3 shows how
TACO’s per-dimension approach allows for the expression of
a variety of different common formats. For example, the CSR
matrix encoding (shown in the center) is constructed by using
a Dense encoding of the first dimension and a Compressed

encoding of the second dimension. The CSC matrix encoding
(shown on the right) instead uses a Dense encoding of the
second dimension and a Compressed encoding of the first
dimension, and orders the dimensions in reverse.

Data Distribution. SpDISTAL extends the tensor distribution
notation (TDN) language developed in DISTAL [13] with new
constructs for describing distributions of sparse tensors. TDN
lets users specify how each dimension of a tensor is partitioned
onto different dimensions of an abstract machine represented by
an n-dimensional grid. A TDN statement assigns names to each
dimension of a tensor and a machine, and tensor dimensions
that share a name with a machine dimension are partitioned by
the corresponding machine dimension. For example, the TDN
statement T xy 7→x M maps a matrix T row-wise onto a one
dimensional machine M, declaring that the first dimension of
T is partitioned by the first dimension of M. We include four
examples of TDN statements for dense tensors in Figure 4.

In SpDISTAL, we extend TDN with universe and non-zero
partitions, and coordinate fusion. TDN’s default partition is a
universe partition: when a tensor dimension d is partitioned by
a machine dimension, the range of coordinates of d (i.e., the
universe2 U) is partitioned equally among processors in that
machine dimension. As seen in Figure 5a, universe partitions
can be applied to sparse tensor dimensions, partitioning the
non-zero coordinates according to the equal partition of U.

Universe partitions of sparse tensor dimensions may result
in imbalance, as the non-zero coordinates may not align
with the universe partitions. We therefore introduce non-zero
partitions, which declare that the non-zero coordinates of
d should be partitioned evenly using the tilde operator d̃
on a machine dimension. For example, the TDN statement
T x7→x̃ M declares that the non-zeros of a sparse vector should
be distributed equally onto M and is visualized in Figure 5b.

In isolation, non-zero partitions are not sufficient to evenly
distribute higher order tensors. For example, a matrix with no

1Figures used with author permission from Yadav et al. [13]
2We refer to the set of all coordinates of a tensor dimension as the universe,

from which a sparse tensor may store only a subset.
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Figure 5: Sparse tensors distributed with TDN. Each color
indicates a group of coordinates mapped to the same processor.

empty rows but a varying number of non-zeros per row has
the same distribution under a universe and non-zero partition
of the first dimension. We therefore introduce coordinate
fusion, allowing for operations such as evenly distributing
the non-zero coordinates of a sparse matrix. Coordinate fusion
collapses multiple dimensions into a single logical dimension,
which can be the target of a non-zero partition. The syntax
T xy

xy→f7−−−→f̃ M utilizes coordinate fusion to equally distribute
the non-zeros of a matrix by flattening x and y into a new
coordinate f and then performing a non-zero partition of f ,
visualized in Figure 5c. The combination of fusion and non-zero
partitioning allows for expression of a variety of non-trivial
data partitioning strategies. For example, the three distributions
T xyz 7→x̃ M, T xyz

xy→f7−−−→f̃ M, and T xyz
xyz→f7−−−−→f̃ M map a 3-

tensor onto a machine by equally distributing the non-zero
slices, the non-zero tubes and non-zero values respectively.
Fusion and non-zero partitions do not subsume universe
partitions—Subsection II-D describes tradeoffs between the
gained load balance and additional communication.

C. Scheduling Language

Like many domain specific languages [20]–[26], SpDISTAL
separates the computation description from how the computa-
tion should be executed through a scheduling language that
describes optimizing transformations. Common transforma-
tions introduced by prior work that SpDISTAL uses include
parallelize (parallelize loop iterations), precompute (hoist
computation out of a loop), split/divide (break a loop into
two nested loops), fuse (collapse two loops into a single loop),
and reorder (change the order of loops).

Though these common loop transformations have generally
applied to dense loop nests, Senanayake et al. [20] show
how to extend TACO to support these transformations on
sparse iteration spaces on a single node. To perform additional
optimizations on sparse iteration spaces, Senanayake et al. also
introduce variants of the split and divide transformations
that enable the iterations over only non-zero values to be strip-
mined into equal pieces. These variants compose with the fuse

and parallelize commands to enable statically load balanced
iteration over certain sparse loops. For example, Senanayake
et al. show how to implement an SpMV that is load-balanced



over CPU threads by fuse-ing the i and j dimensions of the
computation, applying the non-zero based variant of split,
and then parallelize-ing the resulting outer loop. We refer to
Sections 2 and 3.3 of Senanayake et al. [20] for more details.

Finally, DISTAL [13] introduced new scheduling com-
mands to target distributed machines, namely distribute and
communicate. distribute directs that iterations of the target
loop should execute on different processors. The communicate

command directs that the necessary subsets of each target
tensor should be fetched to a local memory at the beginning of
each iteration of the target loop. The communicate command
is only used for optimization—users control the granularity of
communication for performance and DISTAL infers what data
to communicate and the source and destination of transfers.

SpDISTAL’s scheduling language combines the single-node
sparse iteration space transformations in TACO [20] with
DISTAL’s distributed scheduling transformations [13], enabling
the distribution of sparse tensor programs. This combination of
scheduling transformations is novel and unique to SpDISTAL.

D. Putting It Together: Scheduling SpMV

To showcase the SpDISTAL programming model, we discuss
two algorithms for the SpMV kernel, a(i) = B(i, j) · c(j)
that target a machine M organized as one-dimensional grid of
processors. The first uses a row-based distribution, implemented
using SpDISTAL’s C++ API in Figure 1, and the second
uses a non-zero-based distribution of the computation. We use
the same sparse formats for each tensor in both distributed
algorithms: a, c = {Dense} and B = {Dense, Compressed}.

In the row-based algorithm, each processor is assigned
rows of B, the corresponding elements of a, and all of c.
To avoid data movement at compute time, we declare the data
distributions of each tensor as follows: a x 7→x M, B xy 7→x M
and c x7→y M. To schedule this algorithm, we divide to create
a group of rows for each processor, and distribute the groups
over each processor. We then use communicate on a, B and c

at the distributed loop, pre-fetching each sub-tensor at the start
of processing each group of rows.

When the rows of B have different numbers of non-zeros,
a row-based algorithm can suffer from load imbalance. An
algorithm that evenly splits the non-zeros, on the other hand,
enables perfect load balance at the cost of communication to
reduce into the output. This algorithm partitions the elements
of a (not necessarily evenly) and replicates c. We choose a
non-zero based distribution of B using coordinate fusion and
a non-zero partition with B xy

xy→f7−−−−→f̃ M. To schedule the
computation we fuse the i and j loops, then divide the space
of non-zero coordinates of B. Finally, we distribute and
communicate as before to complete the schedule.

In both algorithms, we matched the data and computation
distributions to avoid unnecessary communication. However,
this is not required—a SpDISTAL program that utilized the
row-based schedule but the non-zero based data distribution is
valid but comes at a performance cost, as extra communication
operations would be needed to reshape the non-zero based data
distribution into a row-based one.
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(b) Preimage

Figure 6: Visualization of image and preimage operations.

III. DISTRIBUTED SPARSE TENSOR DATA STRUCTURES

The first step to realizing the programming model discussed
in Section II is to define the data structures used to represent
distributed sparse tensors. In this section, we describe abstract
distributed data types on which we lay out distributed sparse
tensors. Then, in Section IV, we describe how to generate code
that distributes and computes on these sparse tensors. These
abstract data structures are then implemented by a runtime
system (Legion [16]) through dynamic analyses.

A. Abstract Distributed Data Structures

To manage the complexity of distributing sparse tensors, we
first reduce them to abstract data types that more directly lend
themselves to distribution. These abstract data types come from
the Legion ecosystem [14], [16].

An index space is an abstract object representing a set of
indices or coordinates, where the indices can have any number
of dimensions. A region is a multi-dimensional array of values,
where the values can be primitive types such as integers or
floats, or structured data such as index spaces that name sets
of indices in other regions. As a multi-dimensional array, a
region can be viewed as a function from indices in a multi-
dimensional index space to a set of values. Therefore, each
region is associated with an index space that describes the
valid set of indices that can be used to access the region.

A partition is an abstract object representing a mapping
from a set of colors to (potentially overlapping) subsets of an
index space. We depict partitions by shading subsets of regions
different colors. Regions can be partitioned into sub-regions by
constructing a partition of the region’s associated index space.
Each sub-region is associated with the corresponding subset of
the original partitioned index space. Regions are distributed by
partitioning them into sub-regions that are placed onto different
memories across a distributed machine.

Partitions are created either through direct coloring of subsets
of indices, or from existing partitions through a class of
operations known as dependent partitioning [14] operations. We
utilize two dependent partitions operations image and preimage
that are applicable to regions containing index spaces as values.
Regions with index spaces as values encode pointers to indices
of other regions. For example, in Figure 6a, the first element
of the top region is an index space corresponding to the set
{0, 1, 2}, pointing to the first three elements of the bottom
region. Intuitively, image colors all destinations of pointers
with the same color as their source, while preimage colors all
sources of pointers with the same color as their destination.

We now give precise definitions of image and preimage.
Consider a source region S containing index spaces that
name indices in a destination region D. Given a partition



d e

a b c

g h

f

0

1

2

3

0 1 2 3 IndexSpace({0, 1, 2, 3})

{0,2} {3,4} {6,7}{5,5}

0 1 13 3 0 30

a b dc e f hg

pos

crd

vals

dom

0

0 1 3

a b c

1 3

d e

0

f

0

g

3

h

1 2 3

Coordinate TreeA 4x4 matrix SpDISTAL CSR
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PS of S, image(S, PS , D) is a partition P ′ of D such that
∀c ∈ PS ,∀i ∈ PS [c], S[i] ⊆ P ′[c], depicted in Figure 6a.
Preimage performs the inverse operation: given a partition Pd

of D, preimage(S, PD, D) is a partition P ′ of S such that
∀c ∈ PD,∀i ∈ PD[c],∀i′ s.t. i ∈ S[i′], i′ ∈ P ′[c], depicted in
Figure 6b. We reiterate that partitions can contain overlapping
subsets of index spaces. As seen in Figure 6b, the resulting
partition of S colors some indices with multiple colors. Data
referenced by multiple sub-regions in a partition is shared
across the different memories that sub-regions are placed in, and
the runtime system manages coherence between the different
copies.

B. Distributed Sparse Tensors

Having described abstract data structures that represent
distributed arrays and operations to create expressive partitions
of these arrays, we show how to use them to represent
sparse tensors. Our distributed sparse tensor encoding is a
distributed extension of the encoding proposed by TACO [15]
and discussed in Subsection II-B. To give intuition about
our (and TACO’s) sparse tensor encoding, we describe the
coordinate tree representation of a tensor.

A tensor T ’s coordinate tree is a tree with one level per
dimension of T (in addition to a root), as shown in the center
of Figure 7. Each path from the root to a leaf node represents
a non-zero tensor coordinate. The levels of the coordinate tree
are ordered in the way the dimensions of T are stored. For
example, a row-major layout of a matrix would have rows
followed by columns, while a column-major layout would have
columns followed by rows. Each level of the coordinate tree is
represented with a level format, which encodes the non-zero
coordinates of the level with different data structures.

Sparse tensors are encoded by specifying how each level of
the coordinate tree is stored independently of the other levels.
Each coordinate tree level is represented by a level format that
defines how the non-zero coordinates of the coordinate tree level
are represented with different physical data structures. In this
paper, we consider two level formats: the Dense level format
that stores all coordinates of a level in a dense array, and the
Compressed level format that encodes the non-zero coordinates
of a level by compressing away the zero coordinates.

The Dense level format is used to encode coordinate tree
levels that contain few zero values. We encode Dense levels
with an index space over the range from zero to the size of the
dense level, named dom. Multiple contiguous Dense levels are
collapsed into a single logical multi-dimensional Dense level
that is represented by a multi-dimensional index space.

Compressed levels are encoded in TACO with an array of
coordinates (crd) and an array that stores bounds on the range

0

0 1 3

a b c

1 3

d e

0

f

0

g

3

h

1 2 3

(a) Universe partition of level one.

0

0 1 3

a b c

1 3

d e

0

f

0

g

3

h

1 2 3

(b) Non-zero partition of level two.

Figure 8: Coordinate tree partitions derived from a level
partition. Dashed grey lines indicate the initial level partition.

of coordinates associated with each entry in the parent level
(pos). The coordinates for an entry i in the parent level are
stored in the positions of crd within the range [pos[i], pos[

i+1]). SpDISTAL stores the pos and crd arrays as regions to
enable partitioning and distribution. As the pos region contains
ranges of the crd region, our goal is to utilize image and
preimage to relate partitions of pos and crd. Therefore, we
store tuples in the pos region that contain the lower and upper
bounds of coordinate positions, representing a set of indices
in the crd region. The coordinates for an entry i in the parent
level are stored in positions [pos[i].lo, pos[i].hi] of crd.
Figure 7 visualizes an SpDISTAL CSR matrix.

IV. COMPILING DISTRIBUTED SPARSE TENSOR PROGRAMS

Having described the data structures that represent sparse
tensors, we now show how to generate distributed sparse tensor
algebra code. Since we can utilize single node code generation
for sparse tensor algebra ([15], [20]), the key challenge is
partitioning sparse tensors into sub-tensors that can be pro-
cessed on a single node. Describing partitions of sparse tensors
enables moving sparse tensors into a specified distribution or
to where they are needed by a computation. Our approach has
two components: 1) a set of compiler abstractions to reason
about data partitioning, and 2) a code generation algorithm that
uses these abstractions to generate partitioning code specialized
to a computation or data distribution specification. We first
provide the intuition behind our approach, and then describe
the novel compiler abstractions and code generation process.

A. Intuition

To build intuition for our approach, we appeal to the
coordinate tree representation of a sparse tensor. Consider the
row-based and non-zero-based SpMV algorithms discussed in
Subsection II-D. The distributed loops correspond to partitions
of the matrix’s coordinate tree. The first strategy distributes
the rows, corresponding to a partition of the first coordinate
tree level (Figure 8a). The second strategy distributes the non-
zero coordinates, corresponding to a partition of the second
coordinate tree level (Figure 8b). In the row-based strategy,
each coordinate in the first level will access all child coordinates
in the second level of the tree. In the non-zero based strategy,
each coordinate in the second level needs to access its parent
coordinate in the first level of the tree.

Figure 8a and Figure 8b depict the full coordinate tree
partitions for each strategy. Given a partition of a coordinate
tree level, we obtain a partition of the child level by applying the
partition to the children of each node in the level. Conversely,
we obtain a partition of the parent level of a partitioned level



Level Type Level Function Definitions

Dense

initUniversePartition(): return ‘C = {}‘
createUniversePartitionEntry(color, bounds):
return ‘C[color] = bounds‘

finalizeUniversePartition():
return ‘P = partitionByBounds(C, dom)‘, ‘P‘, ‘P‘

initNonZeroPartition(): return ‘C = {}‘
createNonZeroPartitionEntry(color, bounds):
return ‘C[color] = bounds‘

finalizeNonZeroPartition():
return ‘P = partitionByBounds(C, dom)‘, ‘P‘, ‘P‘

partitionFromParent(parentPart):
return ‘part = copy(parentPart)‘, ‘part‘

partitionFromChild(childPart):
return ‘part = copy(childPart)‘, ‘part‘

Compressed

initUniversePartition(): return ‘C_crd = {}‘
createUniversePartitionEntry(color, bounds):
return ‘C_crd[color] = bounds‘

finalizeUniversePartition():
return ‘P_crd = partitionByValueRanges(C_crd, crd)

P_pos = preimage(pos, P_crd, crd)‘,
‘P_pos‘, ‘P_crd‘

initNonZeroPartition(): return ‘C_crd = {}‘
createNonZeroPartitionEntry(color, coordBounds):
return ‘C_crd[color] = coordBounds‘

finalizeNonZeroPartition():
return ‘P_crd = partitionByBounds(C_crd, crd)

P_pos = preimage(pos, P_crd, crd)‘,
‘P_pos‘, ‘P_crd‘

partitionFromParent(parentPart):
return ‘P_pos = copy(parentPart)

P_crd = image(pos, P_pos, crd)‘, ‘P_crd‘

partitionFromChild(childPart):
return ‘P_crd = copy(childPart)

P_pos = preimage(pos, P_crd, crd)‘, ‘P_pos‘

Table I: Partitioning level function definitions for Dense and Compressed levels. Ticks indicate IR fragments.

by partitioning the parent level such that each parent node is
colored with all of its children’s colors. The resulting partition
of the coordinate tree may assign a node in a multiple colors.
For example, in Figure 8b, the coordinate 0 in the first level is
needed by nodes colored red and green in the second level.

This intuition yields a high level code generation strategy:
First, we create an initial partition of a level of each tensors’
coordinate tree based on the data or computation distribution
directives. Then, we use the initial level partition to create
partitions of all levels above and below the initial level.

B. Format Abstractions for Sparse Tensor Partitioning

To realize the intuitive algorithm on coordinate trees, we
must translate the partitioning operations on coordinate tree
levels to partitioning operations on the abstract data structures
that encode distributed sparse tensors. In SpDISTAL, each
tensor dimension is encoded by a level format that encodes
how a coordinate tree level is stored in memory. Chou et
al. [27] proposed a compile-time interface for level formats
that provides an abstraction for a code generation algorithm
to target. The abstraction allows for per-dimension reasoning
about sparse tensors and for new formats implementing the
interface to be added without changing the code generation
algorithm. The format abstraction contains level functions that
return intermediate representation (IR) fragments for the code
generator to manipulate. In this section, we introduce new
level functions that correspond to the two intuitive phases of
coordinate tree partitioning: 1) initially partitioning a coordinate
tree level and 2) deriving a partition of the full coordinate tree.
Then, in Subsection IV-C we show how a code generation
algorithm can utilize these abstractions to generate specialized
partitioning code.

There are two groups of functions for creating initial level
partitions, corresponding to universe and non-zero partitions.
The universe partition group consists of three functions:
initUniversePartition() -> IRStmt
createUniversePartitionEntry(color,bounds) -> IRStmt
finalizeUniversePartition() -> (IRStmt,partition,partition)

initUniversePartition initializes any necessary data struc-
tures for partitioning. createUniversePartitionEntry takes
symbolic values of a color and a coordinate range that should

be assigned to the color and maps the range of coordinates
to the color. finalizeUniversePartition finalizes any data
structures and returns a partition to use for partitioning parent
levels and a partition to use for partitioning child levels.

The non-zero partition group also consists of three functions:
initNonZeroPartition() -> IRStmt
createNonZeroPartitionEntry(color,bounds) -> IRStmt
finalizeNonZeroPartition() -> (IRStmt,partition,partition)

initNonZeroPartition and finalizeNonZeroPartition

are the same as their universe partition counter-
parts. createNonZeroPartitionEntry is similar to
createUniversePartitionEntry, but takes bounds on
the positions within the level that encode non-zero coordinates.

There are two functions for constructing derived partitions:
partitionFromParent(partition) -> (IRStmt,partition)
partitionFromChild(partition) -> (IRStmt,partition)

Each function partitions a level using an existing partition, and
returns a partition to use to partitioning child or parent levels.

We show implementations of the partition level functions for
Dense and Compressed levels in Table I. The initial partitioning
functions for Dense levels color the coordinate space that the
Dense level represents, and the derived partitioning functions
apply input partitions to the coordinate space. For Compressed
levels, the universe partitioning functions partition the crd re-
gion by bucketing the coordinates into the ranges demarcated by
createUniversePartitionEntry, while the non-zero partition-
ing functions partition the crd region according to the position
bounds demarcated by createNonZeroPartitionEntry. Both
use a preimage to recover a partition of the pos region. The
derived partitioning functions partition the pos and crd regions
from parent and child partitions, and use image and preimage
to create partitions of the other region in the level.

C. Code Generation Algorithm

We describe how the format abstraction functions for
partitioning are used in an algorithm to generate code that
partitions sparse tensors. This algorithm implements the
intuitive strategy described in Subsection IV-A by making
calls to the format abstraction functions to generate code
that partitions each level of a tensor. Our algorithm encodes
information about the relationships between tensor levels



through creating partitions, and discharges the data movement
operations required to materialize these partitions to a runtime
system.

The algorithm is a recursive function called on a scheduled
TIN statement and recurses on index variables in the scheduled
order. For each distributed index variable, the algorithm
generates code to create initial level partitions of tensors, and
then code to derive partitions of full coordinate trees. Pseudo-
code for the algorithm is in Figure 9a. Figure 9b contains
generated code for a row-based SpMV schedule. Figure 9c
and Figure 9d depict partitions created by our algorithm for
the row-based and non-zero-based SpMV schedules.

During code generation, TACO breaks iteration over sparse
data structures into two kinds: coordinate value iteration and
coordinate position iteration. Coordinate value loops iterate
over all possible coordinate values and compute or retrieve
present coordinates from tensor levels. Coordinate position
loops instead iterate over the non-zero coordinates in a level
by directly iterating over the positions that hold non-zero
coordinates in a level. Coordinate position loops arise when
applied scheduling transformations strip-mine iterations over
non-zero coordinates only, as discussed in Subsection II-C. Our
code generation algorithm follows these two cases: distributed
coordinate value loops distribute the space of coordinates, cor-
responding to universe partitions, while distributed coordinate
position loops distribute the space of non-zero coordinates,
corresponding to non-zero partitions.

To generate partitioning code for coordinate value loops,
the algorithm creates initial universe partitions of accessed
tensor levels by calling createInitialUniversePartitions,
which proceeds in three steps to generate the code labeled
(1) in Figure 9b. First, it invokes initUniversePartition for
each tensor accessed by the current index variable. Next, it
emits a for loop over the current index variable, and infers
symbolic upper and lower bounds on the index variable to
pass to an invocation of createUniversePartitionEntry for
each tensor. Lastly, it calls finalizeUniversePartition on
each tensor. The algorithm then partitions each coordinate tree
using partitionCoordinateTrees partitions each level above
the initial level with partitionFromChild and partitions each
level below the initial level with partitionFromParent. The
result of partitionCoordinateTrees is demarcated with label
(2) in Figure 9b.

The partitioning process for coordinate position loops is
similar to the process for partitioning coordinate value loops.
The algorithm calls createInitialNonZeroPartition, which
constructs an initial level partition of the position space tensor
by invoking initNonZeroPartition, generating a loop with
the result of createNonZeroPartitionEntry and completing
the level partition with finalizeNonZeroPartition. Next, the
algorithm partitions the full coordinate tree of the position space
tensor as previously with partitionNonZeroCoordinateTree.
Finally, the algorithm uses a universe partition derived from
the top-level partition of the position space tensor’s coordinate
tree to use as an initial level partition for all other tensors in
the statement (partitionRemainingCoordinateTrees).

1 def codegen(TINStatement s, IndexVar i):
2 if not distributed(i):
3 # Fall back to standard TACO code generation.
4 codegenTACO(s, i)
5 return
6
7 if coordinateValueIteration(s, i):
8 # Create initial partitions of each tensor.
9 createInitialUniversePartitions(i, s)

10 # Derive full coordinate tree partitions.
11 partitionCoordinateTrees(i, s)
12 else:
13 # Create initial partition of non-zero split tensor.
14 createInitialNonZeroPartition(i, s)
15 # Partition the full coordinate tree of the
16 # non-zero split tensor.
17 partitionNonZeroCoordinateTree(i, s)
18 # Using the partition of the non-zero split tensor,
19 # partition all other accessed tensors.
20 partitionRemainingCoordinateTrees(i, s)
21
22 # Emit a distributed for loop over the index variable
23 # and pass the partitions to each iteration.
24 emitDistributedForLoop(i)
25 # Codegen the next index variable as the loop body.
26 codegen(s, next(i))

(a) Code generation algorithm.

1 void SpMV(Tensor a, Tensor B, Tensor c, int pieces) {
2 // B1.initUniversePartition()
3 Coloring BColoring = {};
4 for (int io = 0; io < pieces; io++) {
5 int iLo = io * (B[0].dim / pieces);
6 int iHi = (io + 1) * (B[0].dim / pieces);
7 // B1.createUniversePartitionEntry(io, {iLo, iHi})
8 BColoring[io] = {iLo, iHi - 1}; }
9 // B1.finalizeUniversePartition()

10 auto B1Part = partitionByBounds(B[0].dom, BColoring);
11 // B2.partitionFromParent(B1Part)
12 auto B2PosPart = copy(B1Part, B[1].pos);
13 auto B2CrdPart = image(B2PosPart, B[1].pos);
14 auto BValsPart = copy(B2CrdPart, B.vals);
15 // Execute each iteration on a different node.
16 distributed for io in {0 ... pieces} {
17 B = Tensor({B1Part[io],
18 {B2PosPart[io], B2CrdPart[io]},
19 BValsPart[io]});
20 for (int ii = 0; ii < (B[0].dim / pieces); ii++) {
21 int i = io * (B[0].dim / pieces) + ii;
22 for (int jB = B[1].pos[i].lo;
23 jB <= B[1].pos[i].hi; jB++) {
24 int j = B[1].crd[jB];
25 a.vals[i] += B.vals[jB] * c.vals[j];
26 }}}}

(b) Generated pseudo-code for a row-based SpMV. For simplicity,
partitioning of a and c, iteration guards and bounds checks are omitted.
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Figure 9: Code generation algorithm and examples of output.

After creating the necessary partitions of each tensor in
the input statement, the algorithm emits a distributed for loop
over the current index variable and passes the corresponding
sub-region of each partition to each distributed loop iteration
(emitDistributedForLoop), as seen in label (3) in Figure 9b.



The body of the loop is generated by a recursive call to the
code generation algorithm (label (4) in Figure 9b).

V. IMPLEMENTATION

We implement SpDISTAL by extending DISTAL [13], which
targets the Legion [16] runtime system, and use techniques
from TACO [15] to generate sparse code for CPUs and GPUs.

A. Partitioning

To implement the partitioning strategy described in Sec-
tion IV on the irregular data structures that store sparse
tensors, SpDISTAL utilizes the dependent partitioning [14]
infrastructure of Legion. We implement the index space,
partition and region types discussed in Section III with Legion’s
IndexSpace, Region and LogicalPartition types. Legion
supports distributed image and preimage operations, allowing
for partitioning of sparse tensors without moving all program
data into a centralized location. Legion manages moving
the subregions defined by SpDISTAL’s partitions between
memories in the target machine through runtime analysis.

B. Sparse Output Tensors

Our prototype implementation of SpDISTAL has support for
some cases of statements and output sparsity formats. Some
tensor index notation statements (such as sparse tensor-times-
vector A(i, j) = B(i, j, k) · c(k)) preserve the sparsity pattern
of the input tensor in the output tensor. SpDISTAL identifies
situations where this is possible and emits code that copies
the coordinate metadata from the output tensor into the input
tensor and modifies the values of the output tensor only. For
cases where the sparsity pattern of the output is unknown, we
implement the two-phase parallel assembly approach described
by Chou et al. [28]. SpDISTAL generates code that first
symbolically executes the desired computation and records
what locations non-zero outputs should be written into, and
then uses the results of the symbolic execution to construct
the output tensor without additional synchronization.

C. Tensor Distribution Notation

We follow DISTAL’s [13] approach to implement tensor
distribution notation. DISTAL translates a TDN statement into
a scheduled TIN statement, using divide and distribute to
partition the tensor according to the TDN statement. We extend
this approach with coordinate fusion using fuse, and support
non-zero partitioning by using the version of divide that strip-
mines the non-zero coordinates. The resulting TIN statement
is then compiled using the algorithm described in Figure 9a.

VI. EVALUATION

Experimental Setup. We ran our experiments on the Lassen
supercomputer [29]. Each Lassen node has a 40 core dual
socket IBM Power9, four NVIDIA Volta V100s connected by
NVLink 2.0 and an Infiniband EDR interconnect. All systems
were compiled with GCC 8.3.1 and CUDA 11.1. Legion3 was
configured with GASNet-EX 2021.3.0 for communication.

3https://gitlab.com/StanfordLegion/legion/, commit excluded for review.

Tensor name Domain Non-zeros
arabic-2005 Web Connectivity 6.39× 108

it-2004 Web Connectivity 1.15× 109

kmer A2a Protein Structure 3.60× 108

kmer V1r Protein Structure 4.65× 108

mycielskian19 Synthetic 9.03× 108

nlpkkt240 PDE’s 7.60× 108

sk-2005 Web Connectivity 1.94× 109

twitter7 Social Network 1.46× 109

uk-2005 Web Connectivity 9.36× 108

webbase-2001 Web Connectivity 1.01× 109

freebase music Data Mining 1.74× 109

freebase sampled Data Mining 9.95× 107

nell-2 NLP 7.68× 107

patents Data Mining 3.59× 109

Table II: Tensors and matrices considered in our experiments.
The first group is matrices from SuiteSparse [17]. The second
group are 3-tensors, where tensors prefixed with “freebase” are
from the Freebase [19] dataset, and remaining tensors are from
the FROSTT [18] dataset.

Comparison Targets. We compare against PETSc4, the TPe-
tra [10] package of Trilinos5 and Cyclops Tensor Framework
(CTF)6. Trilinos and CTF were configured with OpenMP.
Trilinos and PETSc were built with CUDA support.

Dataset. We consider 14 real-world matrices and tensors
from the SuiteSparse [17], FROSTT [18] and Freebase [19]
datasets as described in Table II. For SuiteSparse, we chose
the largest matrices that were representable in PETSc’s and
Trilinos’s default configuration (32-bit indexing). For FROSTT,
we chose all 3-tensors that satisfy the CTF limitation that tensor
dimensions must multiply to less than the maximum 64 bit
integer. For operations with multiple sparse inputs, we follow
Henry and Hsu et al. [30] by shifting the last dimension of
each tensor to construct additional sparse inputs.

Experimental Methodology. All experiments were run with
10 warm-up trials, 20 timed trials and a 90 minute timeout. For
all tensors other than “patents” we use a format with a Dense

outer level and all other levels Compressed; for “patents” we
use two outer Dense levels and Compressed inner level. Thus,
we use the same compressed format for matrices (CSR) as
PETSc and Trilinos. SpDISTAL’s kernels were run with one
rank per node. For CPUs, we run PETSc and CTF with one
rank per core, and one rank per socket for Trilinos. All CPU
experiments utilize all cores on each node. For GPUs, PETSc
and Trilinos were run with one rank per GPU.

Overview. We evaluate the performance of SpDISTAL by
comparing against hand-written systems (PETSc and Trilinos),
and interpretation-based systems (CTF), and consider both
strong scaling and weak scaling experiments. Our evaluation
shows that 1) SpDISTAL achieves performance competitive
with (specialized) expert-tuned kernels in hand-written sys-
tems and 2) SpDISTAL significantly outperforms (general)
interpretation-based approaches to distributed sparse tensor
algebra. These results indicate that a compilation-based ap-

4https://gitlab.com/petsc/petsc, version 3.16.3, commit e27481de.
5https://github.com/trilinos/Trilinos, version 13.2.0, commit 4a5f7906.
6https://github.com/cyclops-community/ctf, commit 36b1f6de.

https://gitlab.com/StanfordLegion/legion/
https://gitlab.com/petsc/petsc
https://github.com/trilinos/Trilinos
https://github.com/cyclops-community/ctf
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Figure 10: Strong scaling results for CPUs. On SpTTV, CTF OOM’ed on the “patents” tensor on 1 node. On SpMTTKRP, CTF
OOM’ed on the “freebase music” tensor on 1 and 2 nodes, and on the “freebase sampled” tensor at all node counts.

proach that produces bespoke implementations can achieve
both generality and high performance, and SpDISTAL is the
first such approach for distributed sparse tensor algebra.

A. Strong Scaling Performance.

We evaluate SpDISTAL on the following sparse tensor
kernels, all of which have been used in prior work [15], [20]
to evaluate sparse tensor compilers. SpMV has applications in
scientific computing, SpMM and SDDMM appear in sparse
machine learning, and SpTTV and SpMTTKRP are used in
tensor factorizations arising in data analytics. SpAdd3 is a
synthetic benchmark intended to show the benefits of kernel
fusion over binary kernels commonly used in libraries.

• SpMV: a(i) = B(i, j) · c(j)
• SpMM: A(i, j) = B(i, k) · C(k, j)
• SpAdd3: A(i, j) = B(i, j) + C(i, j) + D(i, j)
• SDDMM: A(i, j) = B(i, j) · C(i, k) ·D(k, j)
• SpTTV: A(i, j) = B(i, j, k) · c(k)
• SpMTTKRP: A(i, l) = B(i, j, k) · C(j, l) ·D(k, l)

Bolded tensors are sparse while all others are dense. For
CPUs, we compare against PETSc, Trilinos and CTF for SpMV,
SpMM and SpAdd3. The remaining operations are unsupported
by PETSc and Trilinos. For GPUs, we restrict our comparison
to PETSc and Trilinos, as CTF does not currently have GPU
support that we could use7. Both PETSc and Trilinos have GPU
support for the SpMV and SpMM kernels, while only Trilinos
has GPU support for the SpAdd3 kernel when the output

7The CTF developers are in progress addressing issues with the GPU
backend, but this work was not completed at the time of writing.

non-zero pattern is unknown. For the remaining higher order
expressions we compare against SpDISTAL’s CPU kernel.

1) CPU Results: Figure 10 shows speedup plots on CPUs.
Each data point is normalized against SpDISTAL on 1 node,
and each line is the average speedup over all tensors displayed
with a 99% colored confidence interval (computed over all
tensors). For all kernels other than SDDMM, we utilize an
outer dimension-based distributed algorithm and initial data dis-
tributions. For SDDMM, we utilize a non-zero based distributed
algorithm and initial data distribution. We experimented with
non-zero based parallelization for SpMV, SpMM, SpTTV and
SpMTTKRP but found that the extra synchronization required
within the leaf kernel costed more than performance gained
through load balance. SpAdd3 on CSR matrices is incompatible
with the non-zero splitting scheduling transformation, so we
used a row-based distribution and distributed algorithm.

For kernels that PETSc and Trilinos directly support (SpMV
and SpMM), PETSc and Trilinos achieve performance compet-
itive with SpDISTAL. SpDISTAL achieves median speedups
of 1.8x and 1.2x on SpMV and 2.01x and 3.8x on SpMM
over PETSc and Trilinos respectively. We attribute the slight
performance improvement on SpMV to Legion’s deferred
execution model that avoids unnecessary synchronization.
SpDISTAL achieves a larger speedup over PETSc due to
PETSc’s current lack of support for multi-threading: SpDISTAL
uses OpenMP to dynamically load balance among threads,
yielding an improvement. For SpMM, we implement the
schedule used by Senanayake et al [20] as the leaf kernel,
which appears to outperform the kernel used by PETSc and
Trilinos, resulting in lower execution time but similar scaling.
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SpDISTAL-Batched is a memory-conserving SpMM schedule and SpDISTAL-CPU is SpDISTAL’s CPU SDDMM kernel.

The benefit of SpDISTAL’s ability to fuse computation into
a single kernel is demonstrated by SpAdd3. PETSc and Trilinos
do not implement SpAdd3 and must use two matrix additions.
This approach loses data locality and results in additional sparse
matrix assembly operations, allowing SpDISTAL to achieve
median speedups of 11.8x and 38.5x over PETSc and Trilinos.

Having shown that SpDISTAL can achieve competitive per-
formance with hand-written libraries, we now compare against
CTF’s interpretation-based approach. CTF interprets tensor
algebra expressions pair-wise by reducing them to distributed
matrix-matrix multiplication, element-wise, and transposition
operations. As can be seen in the SpMV and SpTTV speedup
charts (Figure 10a and Figure 10e), interpretation leads to
large slowdowns—SpDISTAL achieves median speedups of
299x, 161x and 19.2x on SpMV, SpTTV and SpAdd3. While
interpretation leads to large constant-factor slowdowns for
binary kernels, it leads to asymptotic slowdowns for kernels
that require fusion, such as SDDMM and SpMTTKRP [15]. To
address this slowdown, the CTF authors have developed hand-
written, specialized kernels for SDDMM and SpMTTKRP [31].
For SDDMM, SpDISTAL achieves a median speedup of 15.3x
over CTF, and achieves near perfect speedup due to its load
balanced approach. For SpMTTKRP, SpDISTAL and CTF
achieve similar performance (SpDISTAL achieves median
97% of CTF’s performance) and CTF has wider range of
performance. CTF outperforms SpDISTAL on the “patents”
tensor, and completes the SpMTTKRP operation on “patents”
significantly faster than on much smaller tensors.

2) GPU Results: GPU strong scaling results are shown in
Figure 11 and Figure 12. We use a heatmap-based presentation
for the GPU results to address that 1) on some kernel and tensor
pairs, systems OOM or error out on different GPU counts and

SpDISTAL

SpDISTAL-CPU

Fastest System:

Figure 12: GPU strong scaling results for SpTTV and SpMT-
TKRP comparing SpDISTAL’s GPU and CPU kernels. In each
box is the speedup achieved by the faster system over the
slower system on the same number of nodes.

2) some kernels have no distributed GPU comparison target.
These heatmaps display the performance of each system on
each input tensor and processor count pair.

We use a row-based algorithm and data distribution for
SpMV on GPUs and utilize CuSPARSE to execute the SpMV
at the leaves on a single GPU. We found that this approach
outperformed the distributed version of the non-zero based
schedule utilized by Senanayake et al [20] on the considered
dataset and GPU. Due to the short runtime of SpMV on the
dataset (order of 10ms), we strong scale only to 8 GPUs. As
seen in Figure 11, SpDISTAL outperforms PETSc and Trilinos
on 28/38 configurations, and achieves median speedups of
1.07x and 1.65x over PETSc and Trilinos.

SpMM on GPUs had large variability in both the fastest
system and the number of systems to successfully complete
problem instances. We implement two SpDISTAL schedules
for GPU SpMM. The first distributes the non-zeros of the
computation equally over all GPUs at the cost of replicating the
C matrix, leading to OOMs on some matrix shapes. The other



schedule (denoted “SpDISTAL-Batched”) conserves memory
by distributing the i and j dimensions of the computation to also
partition the C matrix at the cost of potential load imbalance
and extra communication. Per personal communication with
the PETSc developers, the PETSc’s current GPU SpMM imple-
mentation experiences a significant performance penalty when
moving from one to multiple GPUs. Trilinos utilizes CUDA-
UVM, allowing it fit some problem instances into GPU memory
that SpDISTAL cannot, at the cost of paging this data in and
out of the GPU. As Figure 11 shows, the SpDISTAL’s load-
balanced kernel performs the best once data fits into memory
(24/49 configurations), and the memory-conserving kernel wins
in 10/49 more configurations when data does not, for a total
of 34/49. There are 13/49 configurations where Trilinos beats
SpDISTAL’s memory conserving schedule when both fit into
GPU memory. Based on inspection of Trilinos source code,
Trilinos performs a single communication operation to gather
the necessary components of the input matrix to each GPU,
and overflowing into CUDA-UVM. In contrast, SpDISTAL’s
memory-conserving algorithm communicates chunks of the
dense input matrix in multiple rounds between nodes to fit data
within GPU memory. We hypothesize that this choice allows
for Trilinos to send fewer messages over the network than
SpDISTAL, leading to faster runtimes on some configurations.

Similar to SpAdd3 on CPUs, we utilize a row-based strategy
for SpAdd3 on GPUs. PETSc does not support GPU sparse
matrix addition when the sparsity pattern of the output matrix is
unknown, so we compare against Trilinos for SpAdd3 and find
that SpDISTAL significantly outperforms Trilinos due to the
ability to fuse computation and avoid allocation of intermediate
results. Figure 11 shows that SpDISTAL outperforms Trilinos
on 32/34 cases, where Trilinos succeeds in 2/34 cases by fitting
matrices into a smaller GPU count with CUDA-UVM.

For SDDMM, SpTTV and SpMTTKRP we compare SpDIS-
TAL’s GPU kernels to SpDISTAL’s CPU kernels using all the
resources on a node. We use a non-zero based algorithm and
data distribution for each kernel. This differs from the CPU
algorithms, as on GPUs, the additional synchronization within
the leaf kernel is outweighed by the load balance over all GPU
threads across the machine. Figure 11 and Figure 12 show
that SpDISTAL’s GPU kernels achieve a median 4.3x speedup
for SDDMM, 2.0x speedup for SpTTV and 2.2x speedup for
SpMTTKRP when data fits into GPU memory. On SpMTTKRP,
SpDISTAL’s GPU kernels achieve increasing speedup due to
the better load balance offered by the GPU schedule.

B. Weak Scaling Performance.

Figure 13 shows the weak-scaling performance of SpDIS-
TAL’s SpMV kernel on synthetic banded matrices up to 64
nodes (256 GPUs). The initial problem size for a single node
of CPUs and a single GPU was 700 million non-zeros. We
compare against PETSc, and exclude Trilinos due to difficulties
reading large matrices from disk. SpDISTAL is configured to
use CuSPARSE for local SpMV computations. We find that
PETSc achieves perfect weak-scaling performance on both
CPUs and GPUs. SpDISTAL’s CPU kernels achieves between
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Figure 13: SpMV weak scaling results.

90% and 92% of PETSc’s performance. SpDISTAL’s GPU
kernel achieves slightly higher performance, between 1.05x
and 1.29x, than PETSc’s GPU implementation and has some
more performance variability due to millisecond variations in
execution time caused by network effects. We attribute the
slight improvement to Legion’s asynchronous execution model.

C. Discussion

The scheduling and data distribution languages of SpDISTAL
enable concise descriptions of distributed algorithms for sparse
tensor computations that achieve high performance across the
full range of tensor algebra expressions. Without scheduling
and data distribution languages, users would not be able to
describe how their data and computation map onto distributed
machines.

Our experiments show many instances of SpDISTAL out-
performing state-of-the-art systems, enabled by the chosen
schedules and data distributions. For some computations, we
replicated algorithms used by existing systems (e.g. a row-
based distribution for SpMV), resulting in SpDISTAL at least
equalling the performance of those systems. In cases where
SpDISTAL exceeded the performance of existing systems using
the same algorithm, we attribute the performance improvement
to the efficiency and optimizations of the Legion runtime.

In some cases, we used SpDISTAL’s capabilities to adapt
known algorithms to new tensor expressions, such as SpADD3.
Our schedule for SpAdd3 extends the row-based algorithm
for adding two sparse matrices to a row-based algorithm that
fuses the addition across the three input sparse matrices. This
fusion yields speedups over other systems that perform pair-
wise additions and allocate temporary results, as seen in prior
works [15], [30].

Finally, scheduling and data distribution primitives for non-
zero partitioning allow SpDISTAL to express algorithms not
found in existing systems. For SDDMM, GPU SpMM, GPU
SpTTV and GPU SpMTTKRP using these primitives yields
algorithms that are statically load-balanced across all processors.
The perfect load balancing enables high performance at scale,
regardless of the input tensor’s sparsity structure.

Finally, SpDISTAL’s compiler for the scheduling and data
distribution languages allows specializing an implementation



to a particular sparse tensor computation, in contrast to
interpretation. Figure 10 shows that specialized systems can
deliver large speedups over interpreted approaches on specific
kernels. Significant overheads of interpretation, up to an order
of magnitude, have been observed in prior work [13], [31].
SpDISTAL provides generality without sacrificing performance.

VII. RELATED WORK

SpDISTAL is a compiler that implements all of tensor
algebra for sparse tensors and targets distributed machines.
Prior work includes libraries that implement subsets of sparse
tensor algebra on distributed machines, dense compilers that
can target single node and distributed systems, and sparse
compilers that target single node systems.

SpDISTAL and Cyclops Tensor Framework [11], [12]
(CTF) are the only two distributed systems we know of that
support all of tensor algebra on sparse tensors. CTF is an
interpreter for tensor algebra. We show in our evaluation
that SpDISTAL significantly outperforms CTF and achieves
this performance through novel compilation techniques that
specialize the generated code to the input computation, data
layout, data distribution and computation distribution.

PETSc [6] and Trilinos [9] are distributed sparse linear
algebra libraries that support different sparse matrix data
structures and algorithms for sparse linear algebra. These
systems achieve high performance for the subset of tensor
algebra implemented within the library, but often have sub-
optimal performance for computations that compose multiple
library functions. Our evaluation shows that SpDISTAL can
achieve performance competitive with these specialized systems
on computations that they natively implement. Herault et
al. [32] develop a multi-GPU system for binary contractions
between block-sparse tensors, but do not support all of tensor
algebra or sparsity structures that are not block-sparse.

Sparse compilation techniques for single-node systems have
seen attention from researchers. Bik et al. [33], developed an
early compiler that transformed dense loops over matrices into
sparse loops over the non-zero coordinates. The TACO [15]
compiler was the first to describe how to compile all of sparse
tensor algebra to CPUs. Chou et al. [27] showed how to extend
TACO with an abstraction for definition of new formats without
changing the code generation algorithm. Kjolstad et al. [22]
and Senanayake et al. [20] extend TACO with sparse iteration
space transformations and GPU code generation. Finally, Henry
and Hsu et al. [30] generalize TACO beyond addition and
multiplication to arbitrary functions. SpDISTAL sets itself
apart from these work by showing how to compile sparse
tensor algebra to distributed machines containing CPUs and
GPUs. However, SpDISTAL utilizes components from these
prior works for its programming model and implementation.

Finally, dense compilers for both single-node and distributed
systems have been developed. Single-node dense compilers
include Halide [21], TVM [24], Tensor Comprehensions [25]
and Tiramisu [23]. Tiramisu and Distributed Halide [34] allow
for targeting distributed backends. These compilers express

computations in high-level DSLs and optimizing transforma-
tions through scheduling languages, similar to SpDISTAL.
DISTAL [13] is a dense tensor algebra compiler that supports
separate specifications of data and computation distribution.
The key difference of SpDISTAL from these works is that
SpDISTAL enables (distributed) computation over sparse data.

VIII. CONCLUSION

We introduce SpDISTAL, a system that for distributed
sparse tensor algebra through independent specifications of
computation, sparse data structures, data distribution and
computation distribution. SpDISTAL realizes this programming
model through novel compiler techniques for data partitioning,
and shows that programming distributed sparse tensor algebra
can be general, high performance and productive.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We ran the described benchmark applications on the Lassen super-
computer managed by Lawrence Livermore National Laboratory.
Each Lassen node has a 44-core dual-socket IBM Power9 (with 40
available cores) and 4 NVIDIA V100’s with NVLink 2.0 (AC922
server), and are connected with an Infiniband EDR interconnect.
All code was compiled with GCC 8.3.1 and CUDA 11.1.

All experiments were performed as described in the paper. Each
experiment configuration (tensor and processor count) was run
with 10 warm-up trials excluded from timing and 20 timed trials.
In each experiment, the average of the 20 timed iterations was
reported. Each experiment configuration was given a 90 minute
timeout.

Artifact Metadata.
Algorithm: Various algorithms for matrix-multiplication and

higher order tensor computations detailed in the paper.
Compilation: Compilation commands and configurations for each

system detailed below.
Data set: Synthetic matrices and tensors
Runtime Environment: Default environment on Lassen with mod-

ules gcc/8.3.1, cuda/11.1.0 and cmake/3.18.0 loaded.
Hardware: Lassen supercomputer, where each node is equipped

with a 44-core dual-socket IBM Power9 CPU and 4 NVIDIA N100
GPUs with NVLink 2.0 and Infiniband interconnects.

Publicly Available: Available at doi.org/10.5281/zenodo.6604042
and https://github.com/rohany/taco/releases/tag/sc-2022.

System Configuration. Legion was built on commit fc6012f1,
and was compiled using the following configuration:
cmake ../ \

-DCMAKE_CXX_FLAGS="--std=c++11" \
-DCMAKE_BUILD_TYPE=Release \
-DLegion_NETWORKS=gasnetex \
-DCMAKE_INSTALL_PREFIX="$HOME/cmake-install" \
-DLegion_EMBED_GASNet=true \
-DGASNet_CONDUIT=ibv \
-DLegion_USE_OpenMP=true \
-DLegion_USE_CUDA=true \
-DLegion_USE_HDF5=true

This configuration builds Legion with optimizations, OpenMP,
CUDA, HDF5 and GASNet-Ex support. The GASNet-Ex version
is pinned and distributed through the Legion installation. We
use HDF5 v1.10.1 configured with —-enable-thread-safe and
—-disable-hl.

PETSc, version 3.16.3 (commit e27481de, https://gitlab.com/petsc/
petsc) was compiled using the following configuration:
#!/usr/tce/packages/python/python-3.7.2/bin/python3.7
if __name__ == '__main__':

import sys
import os
sys.path.insert(0, os.path.abspath('config'))
import configure
configure_options = [

'--download-c2html=0',
'--download-hwloc=0',
'--download-sowing=0',
'--prefix=./petsc-install/',
'--with-64-bit-indices=0',
'--with-blaslapack-lib=<...>',
'--with-cc=<...>',
'--with-clanguage=C',
'--with-cxx-dialect=C++17',
'--with-cxx=<...>',
'--with-cuda=1',
'--with-debugging=0',
'--with-fc=<...>',
'--with-fftw=0',
'--with-hdf5-dir=<...>',
'--with-hdf5=1',
'--with-mumps=0',
'--with-precision=double',
'--with-scalapack=0',
'--with-scalar-type=real',
'--with-shared-libraries=1',
'--with-ssl=0',
'--with-suitesparse=0',
'--with-trilinos=0',
'--with-valgrind=0',
'--with-x=0',
'--with-zlib-include=/usr/include',
'--with-zlib-lib=/usr/lib64/libz.so',
'--with-zlib=1',
'CFLAGS=-g -DNoChange',
'COPTFLAGS=\"-O3\"',
'CXXFLAGS=\"-O3\"',
'CXXOPTFLAGS=\"-O3\"',
'FFLAGS=-g',
'CUDAFLAGS=-std=c++17',
'FOPTFLAGS=',
'PETSC_ARCH=arch-linux-c-opt',

]
configure.petsc_configure(configure_options)

This is a slightly modified version of the PETSc build provided on
Lassen that enables optimizations and CUDA.

Trilinos, version 13.2.0 (commit 4a5f7906, https://github.com/
trilinos/Trilinos/) was compiled with the following configuration:

export CUDA_LAUNCH_BLOCKING=1
export CUDA_MANAGED_FORCE_DEVICE_ALLOC=1
cmake ../ \
-DMPI_BASE_DIR=<...> \
-DTPL_ENABLE_MPI=ON \
-DTPL_ENABLE_CUDA:BOOL=ON \
-DTrilinos_ENABLE_Tpetra=ON \
-DTrilinos_ENABLE_OpenMP=ON \
-DTrilinos_ENABLE_CUDA=ON \

doi.org/10.5281/zenodo.6604042
https://github.com/rohany/taco/releases/tag/sc-2022
https://gitlab.com/petsc/petsc
https://gitlab.com/petsc/petsc
https://github.com/trilinos/Trilinos/
https://github.com/trilinos/Trilinos/
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-DKokkos_ENABLE_CUDA:BOOL=ON \
-DTPetra_ENABLE_CUDA:BOOL=ON \
-D Kokkos_ENABLE_Cuda_UVM:BOOL=ON \
-D Kokkos_ENABLE_Cuda_Lambda:BOOL=ON \
-DTpetra_INST_CUDA=ON \
-DTpetra_INST_OPENMP=ON \
-DCMAKE_INSTALL_PREFIX=../cmake-install/

This configuration was chosen following instructions from Trilinos
developers and the FAQ.

Cyclops Tensor Framework (commit 36b1f6de, https://github.
com/cyclops-community/ctf), was built using
./configure 'CXX=mpicxx'
make

which builds CTF with optimizations and MPI enabled.
DISTAL (commit 929e378a) was compiled with

cmake ../ \
-DCMAKE_BUILD_TYPE=Release \
-DOPENMP=ON

All DISTAL experiments were run on this commit except for
the weak scaling experiment (run on commit 0831111a) and the
memory-conserving SpMM schedule (run on commit 26a95c14).
These branches contain optimizations that were necessary for the
experiments but have not yet been integrated into the main branch.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: doi.org/10.5281/zenodo.6604042
Artifact name: Source Code and Experiments

Reproduction of the artifact without container: We do not have ex-
perience building and running multi-node jobs using Legion, PETSc
or Trilinos from within Docker containers, and do not know if it is
possible or how performance is impacted by doing so. Alternatively,
we have provided installation configurations for Legion, PETSc
and Trilinos in the artifact appendix, and instructions on building
SpDISTAL in the Github repository.

https://github.com/cyclops-community/ctf
https://github.com/cyclops-community/ctf
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