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Abstract—Tensor algebra is an important computational ab-
straction that is increasingly used in data analytics, machine
learning, engineering, and the physical sciences. However, the
number of tensor expressions is unbounded, which makes it hard
to develop and optimize libraries. Furthermore, the tensors are
often sparse (most components are zero), which means the code
has to traverse compressed formats. To support programmers
we have developed taco, a code generation tool that generates
dense, sparse, and mixed kernels from tensor algebra expressions.
This paper describes the taco web and command-line tools
and discusses the benefits of a code generator over a traditional
library. See also the demo video at tensor-compiler.org/ase2017.

Index Terms—Tensor algebra, linear algebra, sparse, compiler

I. INTRODUCTION

Tensors generalize matrices to any number of dimensions
and are used in diverse domains from quantum physics to ma-
chine learning and data analytics. Tensor algebra generalizes
linear algebra to tensors and is a powerful abstraction that can
be used to express many sophisticated computations.

The traditional approach to linear algebra is to create soft-
ware libraries with optimized functions or methods (kernels)
for all the binary expressions (e.g. matrix addition and matrix-
vector multiplication). To compute a compound (non-binary)
expression the programmer calls a sequence of binary kernels
with vector and matrix temporaries. This approach to software
development worked well in the past, but is now unsuitable
due to new features that cause an explosion in the number of
variants that must be developed.

First, the vectors, matrices and tensors of interest are often
sparse, which means that most of the components are zero.
For example, a tensor of Amazon reviews used to predict how
a user will respond to a new product contains 13 gigabytes of
non-zeros, but 107 exabytes of zeros [1]. To take advantage
of sparsity several compressed formats have been devised that
store only non-zeros. However, this requires library developers
to develop a variant of each kernel for each combination of
supported formats. Second, the number of target platforms,
such as multi-core CPUs, GPUs, TPUs [2] and distributed
systems, is increasing. To take advantage of these architectures
the library developers must rewrite each kernel for each plat-
form. Third, it is expensive to compute compound expressions
through a sequence of kernels, because the vector, matrix
and tensor temporaries that are passed between them can
be large, resulting in poor temporal locality. To address this
issue, library developers write kernels that compute compound
expressions. However, the number of compound expressions is

unbounded, so developers can support only a subset of them.
Finally, when we generalize linear algebra to tensor algebra,
the number of binary expressions also becomes unbounded,
since tensors can have any number of dimensions.

Compositional complexity is often managed with compos-
able software components. At some point the interactions be-
tween these components become so complex that the interfaces
start to look like a language and a meta-programming approach
becomes necessary [3, Chapter 4], [4, Chapter 8]. The mathe-
matical tensor algebra notation that we are concerned with in
this paper calls for a meta-programming approach, because it
is a small language.

Performance is, however, essential for tensor and linear
algebra. For example, Google has expressed concern that
the cost of deep neural networks will become prohibitive
unless the performance of tensor computations is improved [2].
To resolve the tension between the need for generality and
performance we turn to code generation.

In this demo, we discuss taco, the first tool that can gen-
erate efficient parallel code for compound tensor expressions,
where the tensors are stored in dense and sparse formats. The
tool implements the tensor algebra compiler theory described
in previous work [5] and is available as a web tool, a
command-line tool, and as a library. These tools can be used to
generate and benchmark kernels, to search for optimal formats,
and to interactively optimize code.

The taco command-line tool and library are available
under the permissive MIT license at tensor-compiler.org and
the web tool at tensor-compiler.org/codegen. A video demo is
available at tensor-compiler.org/ase2017.

II. TENSOR ALGEBRA, STORAGE AND KERNELS

A tensor generalizes a matrix (with two dimensions) to any
number of dimensions, called the tensor’s order. A vector is
thus a 1st-order tensor and a matrix is a 2nd-order tensor.
Tensor algebra, also called multilinear algebra, is a gener-
alization of linear algebra to work on tensors of any order
(linear algebra is a subset of tensor algebra). Tensor algebra
expressions are best expressed using tensor index notation,
developed by Ricci-Curbastro, Levi-Civita [6] and Einstein [7].
The following example uses index notation to compute a
tensor-vector multiplication/contraction resulting in a matrix:

Aij =
∑
k

Bijkck.

With tensor index notation, tensor algebra expressions are
written as scalar expressions with subscripted index variables



 1 for (int i = 0; i < m; i++) {
 2  
 3  
 4  
 5   for (int j = 0; j < n; j++) {
 6     int pB2 = i * n + j;
 7     int pA2 = i * n + j;
 8 
 9     
10     for (int k = 0; k < p; k++) {
11       int pB3 = pB2 * p + k;
12  
13 
14 
15 
16 
17 
18       A[pA2] += B[pB3] * c[k];
19 
20 
21 
22     }
23   }
24 }

Fig. 1: Aij =
∑

k Bijkck

for (int pB1 = B1_pos[0]; 
         pB1 < B1_pos[1]; 
         pB1++) {
  int i = B1_idx[pB1];
  for (int pB2 = B2_pos[pB1]; 
           pB2 < B2_pos[pB1+1];
           pB2++) {
    int j = B2_idx[pB2];
    int pA2 = i * n + j;
    for (int pB3 = B3.pos[pB2]; 
             pB3 < B3.pos[pB2+1]; 
             pB3++) {
      int k = B3_idx[pB3];
 
 
 
  
      A[pA2] += B[pB3] * c[k];
  
  
  
    }
  }
}

Fig. 2: Aij =
∑

k Bijkck (sparse B)

for (int pB1 = B1_pos[0]; 
         pB1 < B1_pos[1]; 
         pB1++) {
  int i = B1_idx[pB1];
  for (int pB2 = B2_pos[pB1]; 
           pB2 < B2_pos[pB1+1];
           pB2++) {
    int j = B2_idx[pB2];
    int pA2 = i * n + j;
    int pB3 = B3_pos[pB2];
    int pc1 = c1_pos[0];
    while (pB3 < B3_pos[pB2+1] && 
           pc1 < c1_pos[1]) {
      int kB = B3_idx[pB3];
      int kc = c1_idx[pc1];
      int k = min(kB, kc);
      if (kB == k && kc == k) {
        A[pA2] += B[pB3] * c[pc1];
      }
      if (kB == k) pB3++;
      if (kc == k) pc1++;
    }
  }
}

Fig. 3: Aij =
∑

k Bijkck (sparse B, c)

that connect each component of the result to components of the
operands. The tensor-vector contraction has two free variables
i and j and one summation variable k. Free variables always
index the result tensor, while summation variables never index
the result tensor.

The simplest storage format for a tensor is a multi-
dimensional array, which we call a dense format. Dense
formats are appropriate for tensors that have few zeros and
have useful properties such as fast random access and simple
iteration spaces. For example, dense tensors with the same
dimensions have the same iteration space, which can be used
to generate efficient code.

Many tensors are sparse, which means that most compo-
nents are zero. For these tensors storing only the non-zero
values saves memory and may increase performance. Many
sparse storage formats have been devised for matrices [8], [9]
and for higher-order tensors [10], [11]. The key idea is to store
the non-zero values together with an index data structure that
identifies the tensor coordinates of each non-zero.

Compute kernels for tensor algebra expressions must iterate
over operands to produce the non-zero values of the result.
For dense expressions, the loop nest simply iterates over
the polyhedral space defined by the range of each tensor
index variable. Fig. 1 shows a C kernel for tensor-vector
multiplication. Note the simple loop bounds and the statements
on lines 6, 7 and 11 that compute locations in the tensor multi-
dimensional arrays.

Compute kernels for tensor expressions with sparse
operands require more care. The loops iterate over a sparse
subset of the dense polyhedral iteration space—a polyhedron
with holes. Fig. 2 shows tensor-vector multiplication code
when tensor B is stored as a sparse tensor (in every dimension)
with corresponding index structures. Each loop iterates over
the entries in a single dimension; the last loop iterates over

non-zeros. Unlike dense storage, indirect loads are needed to
traverse the index structure, which consist of two arrays for
each dimension: a pos and an idx array. The idx array
stores the coordinates of non-zero entries in that dimension,
and the pos array stores the ranges of idx values belonging
to each tensor slice in the preceding dimension.

The code becomes more complicated when more than one
tensor operand is sparse. When only one operand is sparse, the
code can iterate over its index structure and access the other
operand’s components by computing their location. However,
index structures do not permit such fast Θ(1) random access. If
more than one operand indexed by an index variable is sparse
we must iterate over their merged iteration spaces (similar to a
database merge join or the merge in mergesort). Fig. 3 shows
the tensor-vector multiplication kernel when both B and c are
sparse. Since the operator is a multiplication, the loops must
iterate over the intersection between each row of B and the
vector c. The intersection merge code is shown on lines 10–
22. We iterate over the intersection because if a component
of either B or c at a location is zero then the result is zero
and we do not need to compute it. In contrast, for addition we
must iterate over the union of iteration spaces. With sparse
iteration spaces and merges the kernels become more difficult
to write by hand, motivating the automated code generation
approach taken by the taco tools.

III. THE TACO TOOLS

The taco tool suite consists of a web tool, a command-
line tool, and a C++ library. The command-line tool is built
on top of the library and the web tool is built on top of the
command-line tool. All three can be used to generate kernels.
In addition, the command-line tool can be used to benchmark
kernels and to interactively optimize code.



Fig. 4: The taco web tool with the MTTKRP tensor factorization kernel (tensor-compiler.org/codegen?demo=mttkrp). The generated code
iterates through the sparse index of B; the other operands are dense and support random access.

A. Web Tool

The taco web tool is a hosted code generation tool avail-
able at tensor-compiler.org/codegen. It consists of a JavaScript
client and a remote code generation server written in Python.

The web client implements a GUI where users can enter
tensor index notation expressions in textual form (summations
are implied when a variable does not index the result). Fig. 4
shows a screenshot with the Matricized Tensor Times Khatri-
Rao Product (MTTKRP) expression.1 As a user enters an

1MTTKRP is a key kernel in algorithms that compute the Canonical
Polyadic Decomposition tensor factorization, which is one generalization of
SVD to higher-order tensors.

expression in the text box, the client parses it and dynamically
populates a table with one format description row per tensor.
The format descriptions specify the format of the tensor in
each dimension. taco currently supports dense and sparse
dimensions, and we plan to support more format types in the
future. The dropdown menus can also be re-ordered through
drag-and-drop to specify formats that store tensors in different
directions (e.g. row-major versus column-major).

The user can instruct the web tool to generate code for the
expression and tensor formats by pressing the button labeled
“Generate Kernel”. The client then sends a request to a code
generation server that calls the taco command-line tool to



generate code. The code is then sent back to the client and
displayed at the bottom of the webpage. There are three tabs:
one that shows only the loops to compute values, one that
shows only the loops to assemble sparse result tensors, and
one that shows the complete code. The complete code is a
C header file that the user can download or copy-paste into
an application if it only needs that kernel. This is a light-
weight alternative to downloading and linking against the full
taco C++ library that supports every kernel and that provides
convenient functionality such as file loaders.

B. Command-line Tool

The taco command-line tool is written in C++ and is built
on top of the taco C++ library [5]. Both are publicly available
under the permissive MIT license at code.tensor-compiler.org.
The command-line tool provides all the code generation func-
tionality of the web tool, but also supports measuring the size
of tensors in different formats as well as benchmarking and
code optimization workflows.

1) Tensor Size Measurements: It is useful to be able to
measure the data size of a tensor in different formats. If the
tensor is stored on disk the user can measure its size in a given
format by combining the -i option that loads a tensor from a
file with the -f option that sets tensor formats. The -i option
supports several file formats including the FROSTT Sparse
Tensor format (.tns) [12] and the Tensor Market Exchange
format (.ttx) for general tensors, and the Matrix Market
Exchange format (.mtx) [13] and the Harwell-Boing format
(.rb) [14] for matrices. The following command creates a
tensor B whose format is sparse in all dimensions and fills it
with data from a file containing the Facebook Activities data
set [15]:
$taco -f=B:sss -i=B:facebook.tns
B size: (1504 x 42390 x 39986), 13768416 bytes

Choosing the first dimension to be dense slightly decreases the
memory consumption, which means most matrix slices have
at least one value. Dense dimensions also often lead to faster
kernels, so this format is likely better for this tensor:
$taco -f=B:dss -i=B:facebook.tns
B size: (1504 x 42390 x 39986), 13762396 bytes

2) Benchmarking: Since performance is essential for tensor
algebra, taco supports benchmarking kernel performance
with the -time option. To aid benchmarking the tool also
provides the -g option to generate synthetic data. With these
options we can use the following command to benchmark the
MTTKRP kernel from Fig. 4 on the Facebook tensor:
$taco "A(i,j) = B(i,k,l) * C(k,j) * D(l,j)" \
> -f=B:sss -f=C:dd -f=D:dd \
> -i=B:facebook.tns -d=j:25 \
> -g=C:d -g=D:d -time
B file read: 818.855 ms
B pack: 612.248 ms
B size: (1504 x 42390 x 39986), 13768416 bytes
C size: (42390 x 25), 8478008 bytes
D size: (39986 x 25), 7997208 bytes

Compile: 86.1086 ms
Assemble: 0.059579 ms
Compute: 27.9097 ms

The first four lines is the command. The first line contains
the MTTKRP tensor index notation expression. The second
line specifies formats for the operands: B is all sparse while
C and D are all dense. The third line loads B from a file.
The i, k and l index variables are used to index into B so
their ranges are inferred from the input file. Since the j index
variable is not used to index B we set its size manually with
the -d option. Finally, on the fourth line we use the -g option
to generate dense data for the C and D matrices and include
-time to tell taco to run benchmarks. Note that this option
takes an optional number (e.g., -time=10), which denotes
the number of times the compute kernel should be run. If this
option is given then taco emits the mean, standard deviation,
and median across the runs. The output of this command is
given on the following lines. First, it prints the time spent
reading the file and packing it into the sparse format of B.
Next, it prints the size of each tensor, and finally it prints
the time spent compiling the MTTKRP kernel and assembling
and computing the values of A. Assembly is cheap since A is
a dense matrix without indices.

3) Interactive Optimization Workflow: Finally, taco sup-
ports an interactive optimization workflow where programmers
can use code generated by taco as a starting point for
further manual optimization. The motivation for this workflow
is to give developers an easy way to instrument kernels
and to provide them with an escape hatch when taco
does not (yet) support an optimization they need. The taco
command-line tool writes source code to a file when passed
the -write-source option. This lets a developer modify
the code and then verify and/or benchmark it against the
taco-generated kernel with the -read-source option. For
example, suppose we want to try parallelizing the MTTKRP
kernel with the Cilk parallel programming model [16]. taco
emits code that uses OpenMP [17], but we can write out
the kernel, modify it to use Cilk, and then use the following
command line option to load, verify and benchmark it:
$taco "A(i,j) = B(i,k,l) * C(k,j) * D(l,j)" \
> -f=B:sss -f=C:dd -f=D:dd \
> -i=B:facebook.tns -d=j:25 \
> -g=C:d -g=D:d -time=10 -verify \
> -read-source=mttkrp_cilk.h
B file read: 826.351 ms
B pack: 629.852 ms
B size: (1504 x 42390 x 39986), 13768416 bytes
C size: (42390 x 25), 8478008 bytes
D size: (39986 x 25), 7997208 bytes

Compile: 173.053 ms
Assemble: 0.044249 ms
Compute time (ms)
mean: 18.7999
stdev: 1.3631
median: 17.7584

mttkrp_cilk.h:
Assemble: 0.040121 ms
Compute time (ms)
mean: 11.9734
stdev: 1.53868
median: 11.0135

Verifying... done

This workflow lets developers quickly try out, verify, and
benchmark new ideas for tensor algebra kernel optimization.



TABLE I: Benchmark data collected with the taco command-line tool -time option. The benchmarks show the time in milliseconds
to compute a matrix-vector multiplication with four matrices stored in four different formats. The matrices exemplify common sparsity
structures. The table diagonal shows the importance of choosing formats to match the matrices.

Dense-Dense Dense-Sparse Sparse-Dense Sparse-Sparse

Dense Matrix 71.44 111.24 71.49 112.20
Thermal Matrix 71.48 0.10 71.61 0.10
Slicing Matrix 71.20 0.97 0.52 0.96
Hypersparse Matrix 71.27 0.04 0.36 0.03

TABLE II: Time in milliseconds to compute a tensor-vector multipli-
cation using synthetic tensors with increasing numbers of randomly
located zeros. The data shows that an all sparse tensor outperforms
an all dense tensor on this operation when 15% of the values are
zero.

0% 10% 20% 50% 64% 90% 99%

Dense 20.65 20.65 20.65 20.65 20.65 20.65 20.65
Sparse 38.95 29.00 27.93 24.03 20.65 14.18 6.71

C. Summary of Evaluation

We have evaluated the correctness of the taco tool suite
with more than 300 unit tests. We have also run it on large
data sets and compared the results to those produced by other
popular libraries such as the Matlab Tensor Toolbox [18] and
Eigen [19]. To further test the code generator we plan to
develop a fuzz tester that generates tensor algebra expres-
sions and runs them with operands in every combination of
formats, comparing the results to each other. We also collect
anonymized information from the web tool that we will use
to learn about tensor algebra usage.

We have also evaluated the performance of the code
produced by taco and found that it is competitive with
hand-optimized kernels from libraries such as Eigen and
SPLATT [20]. Furthermore, it is typically 14–1600× faster
than the Matlab Tensor Toolbox, which is the most general
prior system we found. For additional performance results,
including a comparison of formats and plots showing when
sparse formats are better than dense formats, see our paper on
the Tensor Algebra Compiler theory and library [5].

Tables I and II shows performance results collected using
the command-line tool. Table I shows matrix-vector mul-
tiplication performance for four matrices in four formats.
The results demonstrate the importance of an approach that
can generate code for many different formats; each matrix
performs best when using a different storage format. Table II
shows tensor-vector multiplication performance with synthetic
matrices of increasing sparsity for sparse and dense formats
(in all dimensions). This result demonstrates the importance
of sparsity and that sparse formats make sense at about 15%
sparsity for this operation.

IV. DISCUSSION

To the best of our knowledge, taco is the first tool to
generate code for such a large set of dense and sparse tensor
index notation expressions. Library and application developers

can use taco to generate linear and tensor algebra kernels,
freeing them from error prone kernel development.

We believe the existence of this tool opens up many exciting
opportunities. With the ability to automatically generate code,
programmers can quickly explore the space of tensor kernels
and different formats. Furthermore, this process can now be
automated using heuristics or an autotuner. Such automatic
systems become much more powerful when they are no longer
constrained to a limited set of kernels and formats, but can
instead optimize across the set of all kernels and many formats.

The taco tools is publicly available under the MIT license
and we are seeing increasing traffic. There are efforts under-
way to integrate taco with Julia [21] and TensorFlow [22]
and in the future we plan to expand the code generator to
support more formats. We also plan to support distributed
code generation and accelerators, so that programmers are
also relieved from porting kernels. We believe this requires
support for new formats that lay out data to fit each accelerator
architecture. Finally, another exciting direction for future work
is to provide a scheduling language that lets users interactively
control code optimization.

V. RELATED WORK

There are many available libraries and frameworks for
linear and tensor algebra. Most are written in the traditional
way with hand-optimized kernel implementations. On one
extreme is the ubiquitous BLAS dense linear algebra library,
which consists of 142 functions that are mostly variants of a
smaller set of kernels [23]. OSKI is a library that supports the
Blocked Compressed Sparse Row format (BCSR)—a sparse
format with dense inner blocks—and supports autotuning the
block sizes for a few kernels [24]. Eigen is a modern and
convenient C++ linear algebra header library that uses meta-
programming through C++ templates to optimize dense linear
algebra operations [19].

Many dense and sparse tensor libraries have been devel-
oped in the last decade. Because tensor algebra results in
an unbounded number of kernels for binary expressions and
because compound kernels are often essential for performance,
these libraries tend to use meta-programming techniques. The
Tensor Contraction Engine is an early library for compound
dense tensor expressions that relied on compiler techniques
to produce a fused loops [25]. The Matlab Tensor Toolbox is
an early library for sparse tensor algebra that supports many
sparse expressions and is built on top of the sparse linear
algebra in Matlab [18]. Finally, TensorFlow is a recent frame-
work that provides many hand-written kernels for dense tensor



algebra and some for sparse tensor algebra [22]. The Ten-
sorFlow developers have recently adopted meta-programming
with their XLA (Accelerated Linear Algebra) compiler for
dense linear algebra.

VI. CONCLUSION

The unbounded number of tensor algebra kernels and the
need for performance makes a code generation approach nec-
essary. The tool we have demonstrated, taco, automatically
generates tensor algebra kernels for many different formats.
The user specifies a tensor algebra expression and formats
and taco generates a C function to compute the expression.
This relieves programmers from kernel development and lets
them quickly explore different kernels and formats.
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