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Sparse tensors arise in problems in science, engineering, machine learning, and data analytics. Programs
that operate on such tensors can exploit sparsity to reduce storage requirements and computational time.
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1 INTRODUCTION

Vectors, matrices, and their higher-dimensional generalization into tensors that contain many zero
elements are called sparse tensors. Sparse tensors arise in a wide range of problems in science,
engineering, machine learning, and data analytics. Programs that operate on such tensors can
exploit sparsity to reduce both storage requirements and computational time by only storing the
nonzero elements and skipping computations with a trivial outcome (such as x+@=x and x*0=0).
This exploitation comes at a cost, though, since developing and maintaining sparse software by
hand is a rather complex and error-prone task. Therefore, we propose treating sparsity merely as
a property of tensors, not a tedious implementation task, and letting a sparse compiler generate
sparse code automatically from a sparsity-agnostic definition of the computation.

In this article, we describe our experience integrating compiler support for sparse tensor com-
putations into the MLIR open-source compiler infrastructure [56] and the opportunities and chal-
lenges that arise. The idea of making sparsity a property composes well with MLIR’s ease of defin-
ing multi-level abstractions and progressively lowering transformations that continuously operate
at the most appropriate level of abstraction.
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Our sparse compiler support in MLIR consists of a new sparse dialect that provides the attributes,
types, operations, and transformations that are required to make sparse tensor types first-class cit-
izens in MLIR. The sparse dialect forms a bridge between high-level operations on sparse tensor
types and low-level operations on sparse storage formats that avoid redundant work by only stor-
ing and operating on nonzero elements. Central to sparse tensor types is an attribute that defines
the desired way of storing sparse tensors. For example, the following MLIR representation of a
dense matrix multiplication C[i,j] = A[i,k] * B[k, jJ, where type tensor<mxnxf64> denotes
am X n double-precision matrix

%C = linalg.matmul ins(%A, %B: tensor<2x4xf64>, tensor<4x8xf64>) -> tensor<2x8xf64>,

changes into a sparse operation by merely adding a sparse attribute #Sparse to the tensor type of
one or more operands (the precise contents of such a sparse attribute will be discussed later in the
article), as done below for matrix A:

%C = linalg.matmul ins(%A, %B: tensor<2x4xf64, #Sparse>, tensor<4x8xf64>) -> tensor<2x8xf64>

By making sparsity an optional property of the tensors, we avoid the proliferation of special-
ized routines for such operations. Instead, after introducing the sparse tensor attribute, compiler
transformations take care of lowering the operation to imperative constructs and sparse storage
formats that only store and iterate over nonzero elements to perform the matrix multiplication.
Using a different sparse attribute for matrix A, or adding sparse attributes to the tensor types of
matrices B, C, or both, prompts the compiler to generate completely different sparse code. Since
programmers merely annotate sparse tensor types and leave the tedious implementation task to
the sparse compiler, this approach greatly simplifies sparse code development compared to tradi-
tional hand-written approaches. Now, a single sparsity-agnostic description can be mapped into a
wide range of sparse implementations, each tailored to specific instances of the same problem.

The specific contributions of our article are

e a description of an industrial sparse tensor algebra compiler as an MLIR dialect,
e composition of the sparse dialect with other MLIR dialects and transformations,
e two use cases of the sparse tensor algebra compiler, and
e empirical results showing that composition leads to good performance.

The rest of this article is organized as follows. Section 2 provides preliminaries related to sparse
tensors. Sections 3 and 4 dive into the design and implementation details of adding sparse com-
piler support to the MLIR compiler infrastructure. Section 5 explores various ways to use the new
support in MLIR. An experimental validation of the sparse compiler follows in Section 6. Related
work is discussed in Section 7. Finally, conclusions and future plans appear in Section 8.

2 SPARSE PRELIMINARIES

This section provides preliminaries on sparse tensors, sparse storage formats, and sparse compilers.

2.1 Sparse Tensors and Storage Formats

A tensor is a d-dimensional generalization of one-dimensional vectors and two-dimensional ma-
trices. If many elements in the tensor are zero, the tensor is called a sparse tensor, which is a
situation that arises often in problems in science, engineering, machine learning, and data ana-
lytics. In contrast, a tensor without this property is called a dense tensor. One can furthermore
distinguish between unstructured sparse tensors that have no discernible nonzero structures and
structured sparse tensors that have particular nonzero structures, such as tensors with nonzero el-
ements confined within blocks, bands, diagonals, or borders, or with certain statistical properties
on the distribution of nonzero elements.
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Compiler Support for Sparse Tensor Computations in MLIR 50:3

Programs that operate on sparse tensors can take advantage of the sparsity to reduce storage
requirements by only storing the nonzero elements and computational time by skipping trivial
operations (such as x+0=x and x*0=0). How to effectively exploit sparse vectors and matrices has
been well studied in the past for linear algebra problems; see, for example, [2, 20, 22, 26-28, 30, 32,
37, 59, 60, 68, 71, 85, 90, 97]. The growing popularity of deep learning and big data has sparked a
similar interest in studying how machine learning kernels can take advantage of sparse tensors [18,
438, 50, 51, 76, 79, 84].

Many ways of storing sparse tensors have been proposed [14, 15, 39, 44, 47, 57, 65, 72, 74, 75,
80, 87], and which of these storage formats is most effective in terms of minimizing storage as
well as computation depends on the peculiarities of the nonzero structure, the operations to be
performed, and the target architecture. All sparse storage formats consist of a primary storage
that stores the numerical values of the nonzero elements and some overhead storage needed to
map those values to their tensor coordinates, in order to reconstruct the enveloping tensor from
these values. Sometimes, even some zero elements are stored explicitly to accommodate simpler
structured formats or to avoid costly removals of nonzero elements that become zero during the
computation. Such explicit zeros, however, do not impact the correctness of tensor operations.

Well-known examples of sparse storage formats include coordinate format (COO) [75], hi-
erarchical coordinate (HiCOO) [57], compressed sparse row/column (CSR and CSC) [87],
doubly compressed sparse row/column (DCSR and DCSC) [15], compressed sparse fiber
(CSF) [80], block [44], band, diagonal (DIA), jagged diagonal (ELL) [47, 65], adaptive lin-
earized storage (ALTO) [39], and hash maps. Although several examples appear later in the
article, for an in-depth survey of sparse storage formats, we must refer to the literature.

2.2 Sparse Compilers

Writing effective sparse code is a time-consuming and error-prone task, further complicated by
the large number of possible combinations of storage formats, nonzero structures, operations, and
target architectures. Due to the complexity, programmers instead usually restrict themselves to
hand-optimizing a small set of library methods for specific operations and storage formats and
building larger sparse programs by composing available library methods. This approach may lead
to sub-optimal performance when costly data structure conversions are needed in between li-
brary methods or, worse, sub-optimal asymptotic complexity when many avoidable intermedi-
ate results produced by one library method are nullified after multiplication by zeros in the next
method.

Rather, we would like to treat sparsity merely as a property, not a tedious implementation task,
and let a sparse compiler generate sparse code automatically from a sparsity-agnostic definition
of the computation. This idea of keeping sparsity completely transparent to the programmer was
pioneered in the MT1 sparse compiler for linear algebra [7-10] and later formalized and generalized
to tensor algebra in TACO (Tensor Algebra Compiler) [48-51]. With the figurative push of a button,
a sparse compiler can convert a single sparsity-agnostic description into a wide range of sparse
implementations, each tailored to specific instances of the same problem with tensors stored in
different data structures. This automatic approach not only enables non-expert programmers to
generate sparse code quickly but also enables expert programmers to explore the full space of
possible sparse implementations.

3 A SPARSE COMPILER IN MLIR

This section discusses some of our design considerations from implementing a sparse compiler in
the MLIR compiler infrastructure, which is part of the LLVM open-source project.
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3.1 MLIR Compiler Infrastructure

The MLIR open-source project [55, 56] provides an extensible infrastructure for building compil-
ers for domain-specific languages. The infrastructure provides a way to specify new intermediate
representations through dialects together with transformations on these representations. Trans-
formations can be written as compositions of orthogonal localized match and rewrite primitives.
These are often decomposed further into rewriting rules when applied within a dialect and low-
ering rules when converting from a higher-level dialect to a lower-level dialect. Each dialect can
define custom attributes, types, and operations. Throughout the compilation, separate dialects can
co-exist to form a hybrid representation of a program.

The ability to progressively lower to dialects closer and closer to the target hardware during
the compilation process, together with an intuitive transformation mechanism, has made MLIR a
popular compiler infrastructure for domain-specific languages that need to bridge large semantic
gaps, such as compiling for machine learning. In this article, we rely on several MLIR dialects,
whose relationships are shown in Figure 1. The dialects are briefly described below.

Linalg. The Linalg dialect, inspired by the tensor index notation found in tensor comprehen-
sions [89], provides high-level primitives that know how to decompose themselves into loops. A
key design of the current work was to leave the operational semantics of the dialect unchanged,
except that it now supports dense and sparse data types. We assume that high-level kernels writ-
ten in, e.g., Tensorflow, JAX, or Python are presented to the sparse compiler as Linalg operations,
possibly after lowering from higher-level dialects.

Tensor. The Tensor dialect operations manipulate an abstract tensor type for which the compiler
infrastructure has not yet decided on a representation in memory. Small tensors with static sizes
may be directly promoted to constants. When tensors are large enough and/or have dynamic sizes,
they are assigned memory storage through a bufferization process.

SparseTensor. The SparseTensor dialect, discussed in more detail in Section 4, is new to this
work and provides the attributes, types, operations, and transformations that are required to
make sparse tensor types first-class citizens within the MLIR compiler infrastructure. The dialect
provides a bridge between high-level operations on these sparse tensor types and low-level
operations that only store and operate on nonzero elements to avoid performing redundant work.
It co-exists with the Tensor dialect to provide a logical separation between purely dense and
sparse functionality.

SCF. The structured control-flow SCF dialect provides operations that represent looping and
conditionals, e.g., regular for and while loops as well as an if conditional. This is structured at a
higher level of abstraction than control-flow graphs (CFGs). Notably, loop operations may yield
SSA values and compose well with other operations and dialects. This dialect is used by the sparse
compiler to decompose sparse Linalg operations into explicit imperative constructs.

P
N

LLVM

Fig. 1. The MLIR dialects involved in sparse compilation. Ovals contain data, rectangles contain code, lines
indicate data that is used by a dialect, and arrows indicate lowering paths. Although sparse compilation only
adds the SparseTensor dialect, it reuses Linalg to define its operations and SCF and Vector as its targets.
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Memref. The Memref dialect introduces the memref data type, which is the main representation
for memory buffers in MLIR and the entry point to the side-effecting memory-based operations.
The memref data type also provides an unsurprising ABI to interoperate with external C code
and serves as a bridge for calling libraries from MLIR code generation. Dense tensors undergo a
relatively straightforward bufferization into memory buffers (viz. multi-dimensional arrays). The
bufferization of sparse tensors is more elaborate, as will be seen later in this article.

Vector. The Vector dialect provides an architectural-neutral representation of vector operations
that is eventually progressively lowered into machine-specific SIMD instructions.

3.2 Sparse Compiler Design Philosophy

The growing popularity of the MLIR open-source project together with the growing interest in
sparse tensors in machine learning and data analytics prompted adding compiler support for sparse
tensor computations to the MLIR compiler infrastructure. The idea of making sparsity a property
composes well with MLIR’s ease of defining multi-level abstractions and progressively lowering
transformations that continuously operate at the most appropriate level of abstraction. The north
star vision of this project consists of providing an excellent, reusable sparse ecosystem to academia
and industry that is based on first principles. To this end, emphasis was put on introducing sparse
tensor types as first-class citizens into MLIR. Furthermore, a first reference implementation pro-
vides a fully functional implementation of this sparse ecosystem against which future versions
can be compared. The long-term north star vision together with the shorter-term first reference
implementation enables researchers to independently start developing MLIR front-ends for sparse
array languages as well as new MLIR transformations that implement improved or even alterna-
tive sparse compilers. Our hope is that the open-source nature of MLIR will work both ways, that
is, benefit researchers that are new to the sparse domain as well as solicit useful contributions from
experts in the open-source community at large.

4 THE SPARSE TENSOR DIALECT

Sparse tensor support in MLIR mostly resides within a new SparseTensor dialect, which provides
the attributes, types, operations, and transformations that are required to make sparse tensor types
first-class citizens within the MLIR compiler infrastructure. The dialect forms a bridge between
high-level operations on sparse tensor types and low-level operations on the actual sparse storage
formats that only store and operate on nonzero elements to avoid performing redundant work.

4.1 Sparse Tensor Attributes and Types

Many choices are possible for the sparse tensor type specification itself, varying from simply anno-
tating a tensor type as sparse to providing detailed information on the nonzero structure or other
characteristics. We support a TACO-flavored mechanism of annotating sparse tensors [48], since
this provides an elegant and powerful way of specifying a large number of different sparse storage
formats. In true MLIR fashion, however, the type specification has been kept extensible to allow
for more advanced annotations in the future.

Central to the chosen annotation mechanism is a sparse attribute that defines the desired way of
storing each sparse tensor by encoding (1) per-dimension level types of either dense or compressed,
(2) a dimension ordering, and (3) bit widths for pointers and indices.

#SparseTensor = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compresseg” , .. 1,
dimOrdering = affine_map<(i,j,k,...) -> (i,3,k,...)>,

pointerBitWidth = ...,
3 indexBitWidth = ...,
>
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X =(0,0,0,x3,0,0, X6, x7, 0,0, x19, 0,0, 0,0, 0)

0 0 0 0
ap 0 0 aps T= 0 0 0 0
A=10 0 0 0

azo 0 0 0

Fig. 2. Example tensors. We assume tensors use zero-based lexicographical indexing, e.g., a three-
dimensional tensor T starts with element g oo with, respectively, layer, row, and column index 0.

Sparse tensor types are obtained by annotating the built-in tensor types of MLIR with sparse
format attributes as illustrated below:

tensor<..., #SparseTensor>

The attribute indicates that when the d-dimensional tensor is lowered into an actual storage
scheme during bufferization, rather than selecting a straightforward memref buffer used for dense
tensors, the sparse tensor is lowered into a compact sparse storage scheme that conceptually con-
sists of two integral jagged arrays pointers[d][*] and indices[d][*], where each entry in the
first dimension stores, respectively, the pointer and index arrays of a single tensor dimension and
a one-dimensional values array values[*] that provides sufficient space for all stored elements.

Consider, for example, the sparse vector X of Figure 2 together with the following sparse attribute
and sparse vector type shown at the left:

#SparseVector= #sparse_tensor.encoding<{
dimLevelType = [ "compressed" ]

pointers[0]: 0 4
indices[0]: 3 6 7 1 10 ]
values: X3 | Xe | X7 [ X10 ]

¥

tensor<16xf64, #SparseVector>

This type results in the compressed format shown at the right. Contents of pointers[0][0]
and pointers[@][1] denote that elements appear at range [@,4) in the indices and values arrays.
There, indices[@][*] and values[*] provide, respectively, the indices and values of nonzero
elements. Memory is saved by only storing 10 values (4 doubles primary and 6 integers overhead
storage) rather than the 16 consecutive doubles that would result in the dense case.

For matrices, CSR is defined with dimension level type dense for the first dimension and
compressed for the second dimension, as follows. When absent, the dimension ordering defaults
to lexicographical index order, thus, row-wise order in this case.

#CSR = #sparse_tensor.encoding<{

; o "o " pointers[1]: 0 2 2 3]
}>d1mLeve1Type = [ "dense", "compressed" ] indices[1]: 0 3 o
tensor<3x4xf64, #CSR> values: 0.0 | 9.3 | 92,0

Then, the sparse matrix A of Figure 2 maps to the shown compressed format, which has an
implicit dense first dimension of size 3 and only uses the second dimension of the jagged ar-
rays. The nonzero values and corresponding column coordinates in each row 0 < i < 3 can
be found in the indices and values arrays at range pointers[1][i] up to pointers[1][i+1].
There, indices[1][*] and values[*] provide, respectively, column indices and values. Note
that the number 2 is repeated in the pointers array because the second row of the matrix A is
empty.

The storage format can be made doubly compressed using compressed for both dimension level
types. In addition, an explicit dimension ordering can be used to enforce column-wise storage over
the default lexicographical index order storage, as illustrated below with the definition of DCSC.
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#DCSC = #sparse_tensor.encoding<{ pointers[0]: 0 2
dimLevelType = [ "compressed", "compressed" ], indices[0@]: 0 3
dimOrdering = affine_map<(i,j) -> (j,i)> pointers[1]: 0 2 3

> indices[1]: 0 2 0

tensor<3x4xf64, #DCSC> values: doo | azo | Qo3

This type maps to the shown column-wise sparse storage format for the example matrix A. The
contents in pointers[0][0] and pointers[0][1] denote that range [@,2) is used in the next
arrays to store two columns. There, indices[@][*] denote that only column 0 and column 3
contain nonzero elements. The next level provides a similar structure within each stored column.

The attribute easily generalizes to tensor or arbitrary dimensions, as illustrated below:

#SparseTensor = #sparse_tensor.encoding<{ Pomters[@]: 0 2
; o M indices[0]: 0 2
dimLevelType = [ "compressed", X
" comoressed” pointers[1]: 0 1 3
"compressed"Y] indices[1]: 0 0 1
1> P pointers[2]: 0 1 3 5
tensor<3x3x4xf64, #SparseTensor> indices[2]: 0 0 2 2 3 l
values: to,00 | t200 | t202 | t21,2 | 21,3 |

Given the 3-dimensional tensor T of Figure 2, this attribute results in the compressed data struc-
ture shown at the right. Stored elements appear in the default lexicographical index order. Contents
inpointers[@][@] and pointers[@][1] reveal two filled layers, with indices[@][*] specifying
layer 0 and 2 in particular. The next level pointers[1][*] shows that the matrix in the first stored
layer has one filled row and the matrix in the second stored layer has two filled rows. The last level
provides structure within each compressed row.

In addition to the per-dimension level types and optional dimension ordering, the sparse at-
tribute can also specify alternative bit-widths ranging from 8 to 64 for pointers and indices. Nar-
row bit-widths can be used to reduce overhead storage requirements, provided that the widths still
suffice to store the maximum possible integral pointer and index value throughout the storage for-
mat. Given the two choices for each per-dimension level type, all possible permutations for the
dimension ordering, and the four choices for both bit-widths, this relatively simply sparse tensor
type encoding already supports 2¢ - d! - 16 different ways of storing a single d-dimensional ten-
sor. Many of the resulting storage formats directly correspond to common data structures found
in the literature for storing unstructured sparse tensors, or sparse tensors with a simple struc-
ture along bands. Block sparsity [44] can be expressed as well with these annotations using a
higher-dimensional structure together with a mapping back to the original lower-dimensional
indices. In addition, as stated before, the encoding has been kept extensible to allow for speci-
fying even more sparse storage formats in the future. For example, with just a few additional
dimension level types, many more formats can be expressed, including COO, DIA, ELL, and hash
maps, as discussed in detail in [18], as well as uncommon storage formats previously unexplored in
research.

4.2 Sparse Tensor Operations

With sparse tensor types as first-class citizens, any MLIR tensor operation can be made sparse by
simply annotating the tensor types of the operands. For example, the Linalg dialect representation
in MLIR of a dense matrix multiplication operation C[i,j] = A[i,k] * B[k, j] looks as follows,
where the ? in the tensor type denotes a runtime dimension size:

%C = linalg.matmul ins(%A, %B: tensor<?x?xf64>, tensor<?x?xf64>) -> tensor<?x?xf64>

This representation changes into a sparse kernel by merely adding sparse attributes to the tensor
types of the operands, as shown below by storing all matrices in CSR format:

%C = linalg.matmul ins(%A,%B: tensor<?x?xf64,#CSR>,tensor<?x?xf64,#CSR>) -> tensor<?x?xf64,#CSR>
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As such, the SparseTensor dialect only needs to provide a few operations specific to sparse ten-
sor types: (1) materialization operations, (2) conversion operations, and (3) operations that support
progressive lowering. Below, we briefly explore each category.

Materialization operations produce or consume tensor value in SSA form. For example, the new
operation reads a sparse tensor from some source.

%0 = sparse_tensor.new %source : !Source to tensor<?x?x?xf32, #SparseTensor>

The source is typically a file in an external format provided by the Matrix Market [12] (a popular
sparse matrix repository and successor of earlier sets like the Harwell-Boeing Sparse Matrix Col-
lection [29] and SPARSKIT [73]), SuiteSparse [24, 25], HaTen2 [43], or FROSTT [78] (repository
of sparse tensors). Reading from file assumes a target platform that supports a file system, but
other more architecturally neutral sources are possible as well, such as initializing a sparse tensor
from code or through some API from a memory-resident format owned by an external library. The
init operation materializes an uninitialized tensor as SSA value into a computation. Conversely,
the out operation, illustrated below, outputs a sparse tensor to some destination, typically by writ-
ing an external format like FROSTT to a file if the target architecture provides a file system. The
operation is kept general, however, to support other kinds of destinations in the future as well.

sparse_tensor.out %0, %dest : tensor<?x?x?xf32, #SparseTensor>, !Destination

Since MLIR is strongly typed, built-in verification rejects implicit type casts between dense and
sparse tensor types or between differently annotated sparse tensor types, since most of such type
conversions would incur nontrivial costs. Instead, the conversion operation convert operation is
used to make such casts explicit. An example of converting a 10 X 10 sparse matrix in CSR format
to CSC format with dynamic dimensions is shown below.

%to = sparse_tensor.convert %from : tensor<10x10xf64, #CSR> to tensor<?x?xf64, #CSC>

In the first reference implementation, conversion operations between sparse formats are imple-
mented by converting to and from an intermediate coordinate scheme, which avoids the quadratic
trap of implementing all possible direct conversions. In the longer term, however, this approach
can be replaced by more advanced schemes, at least in special cases, such as proposed in [19]. The
convert operation also converts between dense tensor types and sparse tensor types. Although
not practical for many real-world sparse tensors, where storage requirements of an enveloping
dense tensor would be prohibitive, such conversions are useful to manipulate smaller datasets in
tests. An example of initializing a sparse matrix from a compile-time constant that uses a COO-
flavored mechanism of specifying the indices and values of all nonzero elements is shown below.
Although, perhaps somewhat surprisingly, the type of SSA value %m is actually a dense 10 X 8 ma-
trix, the subsequent conversion ensures that the sparse matrix in %s is initialized directly from the
nonzero elements, without ever fully materializing the enveloping dense matrix at runtime.

%m = arith.constant sparse<
[e, o1, [e, 7], [1, 2], [4, 21, [5, 31, _[6, 41, [6, 61, [9, 711,
0, 2.0 , 4.0, 5.0, 6.0, 7.0, 8.0]> : tensor<10x8xf64>
%s = sparse_tensor.convert %m : tensor<10x8xf64> to tensor<10x8xf64, #CSR>
Lastly, the SparseTensor dialect provides operations that facilitate progressively lowering, first

from annotated kernels to an intermediate form that only stores and iterates over nonzero ele-
ments, without fully committing to an underlying storage format yet, then from this intermediate
form to a bufferized form with actual sparse storage schemes, and then finally to executable code
that runs on the target hardware. In the intermediate form, it is useful to have some primitives
that provide sparsity-specific functionality while still hiding full implementation details of the
underlying sparse storage formats. For instance, the indices operation returns the indices array
of the sparse storage format at the given dimension for the given sparse tensor through a one-
dimensional array, called a memref after bufferization.
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An example of the indices operation is shown below:
%ind = sparse_tensor.indices %t, %c3 : tensor<10x10x10x10xf64, #SparseTensor> to memref<?xindex>

Other operations related to sparsity consist of obtaining the pointers or values array and insert-
ing elements into a sparse tensor, possibly assisted by expanding and compressing access patterns
within innermost loops, as further explained later in this section.

4.3 Sparse Tensor Transformations

The sparse compiler itself is implemented as a set of lowering transformations that reside in the
SparseTensor dialect. These transformations take care of lowering annotated kernels, i.e., opera-
tions on sparse tensor types, to imperative constructs and sparse storage formats that only store
and iterate over the nonzero elements, possibly optimized with parallelization or vectorization of
the generated loops by means of parallel and SIMD operations in the SCF and Vector dialects. In
true MLIR fashion, transformation definitions separate mechanism, i.e., how to modify or lower
an intermediate form, from policy, i.e., which transformations should be applied and in what order
to get the best-performing result.

The MLIR sparse compiler transformations closely follow the sparse iteration model of
TACO [48]. Starting with a tensor index notation expressed in the Linalg dialect, a topologically
sorted iteration graph is constructed that reflects the required order on the implicit indices with
respect to the dimension ordering of each sparse tensor. Next, iteration lattices are constructed for
the tensor expression for every index in topological order. Each iteration lattice point consists of
a conjunction of tensor indices together with a tensor (sub)expression that drive the actual sparse
code generation, consisting of a straightforward mapping to loops and conditionals using the SCF
dialect. The resulting sparse intermediate form that only (co-)iterates over the nonzero elements
is subsequently bufferized to another intermediate form with actual sparse storage schemes, and
then finally lowered to executable code that runs on the target hardware, typically by handing off
LLVM IR to the LLVM back-end compiler.

As a simple example, consider the following straightforward Linalg operation that scales the el-
ements in a vector by a constant in-place, viz. x[i] *= c. This particular operation takes the vector
as parameter in the output clause but defines the body in terms of the individually “yielded” scalar
multiplications. As for any Linalg operation, the actual decomposition into a loop is implicit.

%0 = linalg.generic #trait_scale
outs(%vecx: tensor<?xf64, #SparseVector>) {
*bb(%x: f64):
%1 = arith.mulf %x, %c : f64
linalg.yield %1 : f64
-> tensor<?xf64, #SparseVector>

The steps discussed above reveal that the loop-body only needs to execute for nonzero elements
in the sparse vector. This yields the following intermediate form that updates these elements in
place using primitives of the SparseTensor and SCF dialects.

E1§ %x_pointers = sparse_tensor.pointers %vecx, %c@
%x_values = sparse_tensor.values %vecx

(3) %x_lo = memref.load %x_pointers[%c@] : memref<?xindex>
(4) %x_hi = memref.load %x_pointers[%c1] : memref<?xindex>
(5) scf.for %ii = %x_lo to %x_hi step %c1 {

(6) %0 = memref.load %x_values[%ii] : memref<?xf64>

(7) %1 = arith.mulf %0, %c : f64
Egg ) memref.store %1, %x_values[%ii] : memref<?xf64>

Lines (1-2) fetch the pointer and value buffers for the vector. Lines (3-4) initialize the loop
bounds for the subsequent for-loop at lines (5-9). Within the body, line (6) fetches each explicitly
stored value, multiplies it with the constant in line (7), and stores it back into the value buffer in
line (8).
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The sparse iteration model also provides an elegant way to generate code that implements co-
iteration, i.e., iterating over a disjunction or a conjunction of several sparse data structures simul-
taneously. Consider, for example, computing the inner product x += ali] * b[i] of two sparse
vectors, represented by the following Linalg operation:

%0 = linalg.generic #trait_inner
ins(%veca, %vecb: tensor<?xf64, #SparseVec>,
tensor<?xf64, #SparseVec>) outs(%acc: tensor<f64>) {
*bb(%a: f64, %b: 64, %x: f64):
%0 = arith.mulf %a, %b : f64
%1 = arith.addf %x, %0 : f64
linalg.yield %1 : f64

-> tensor<f64>

Then the sparse iteration model reveals that the body only needs to execute when both elements
of the sparse vectors are nonzero. This eventually yields in the following while construct of the
SCF dialect, presented in a reduced and simplified form to enhance readability (mainly by omitting
some machinery needed to represent reduction and induction cycles in SSA form).

) %a_lo = memref.load %a_pointers[%c@] : memref<?xindex>
) %a_hi = memref.load %a_pointers[%c1] : memref<?xindex>
) %b_lo = memref.load %b_pointers[%c@] : memref<?xindex>
) %b_hi = memref.load %b_pointers[%c1] : memref<?xindex>

%result = scf.while (...) {

%cond = %ia < %a_hi && %ib < %a_hi
scf.condition(%cond)

} do {
) %ixa = memref.load %a_indices[%ia] : memref<?xindex>
g %ixb = memref.load %b_indices[%ib] : memref<?xindex>
in(%ixa, %ixb)
) scf.if (%ixa == %i && %ixb == %i) -> (f64) {
) memref.load %a_values[%ial : memref<?xf64>
) memref.load %b_values[%ib] : memref<?xf64>
) %2 = arith.mulf %0, %1 : f64
) % arith.addf %acc_in, %2 : f64
g scf.yield %3 : f64
} else {
g scf.yield %acc_in : f64
)

%1 =
%acc
%0
%

i nsunn

update %iat+ if %ixa == %i
) update %ib++ if %ixb == %i

Here, lines (1-4) set up the loop bounds from already fetched pointer buffers for the subsequent
while-loop at lines (5-24). The conditional clause at lines (5-8) iterates as long as neither elements
in a or b are exhausted. Within the body at lines (8-24), the minimum of the indices of these ele-
ments is determined at line (12). If both indices are equal, the if-operation at lines (13-18) executes,
which accumulates the products at line (17). The yields at line (18) and (20) bring the accumulation
cycle back in SSA form. Finally, lines (22-23) advance the element of either vector or both, before
iterating back into the loop. The loop exits when either vector exhausts its stored elements.

4.4 Sparse Tensor Transformations for Output

Sparse tensor outputs are handled with direct insertions in pure lexicographical index order if all
loops that correspond to left-hand-side indices are outermost, since this allows simply appending
new elements to the sparse storage formats without sorting or data movement. Otherwise, the
sparse compiler uses a technique called access pattern expansion or workspace [7, 28, 35, 50, 68, 69],
which is a well-known way of efficiently dealing with sparse insertions, as further explained using
the following example of a Linalg representation of C[i,j] = A[i,k] * B[k, jI.

%C = linalg.matmul ins(%A,%B: tensor<?x?xf64,#CSR>,tensor<?x?xf64, #CSR>) -> tensor<?x?xf64,#CSR>
With row-wise storage for all matrices, the reduction loop cannot appear innermost, which

prohibits simply inserting in pure lexicographical index order.
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Consequently, the sparse compiler transformations lower this kernel to the following sparse
intermediate form, again presented in a slightly reduced and simplified form to enhance readability.
scf.for %i = %c@ to %m step %cl1 {

%c_i_values, %filled, %added, %count = sparse_tensor.expand %C

scf.for %kk = %a_lo to %a_hi step %cl1 {

%k = memref.load %a_indices[%kk] : memref<?xindex>
%aik = memref.load %a_values[%kk] : memref<?xf64>

§
)
§
) scf.for %jj = %b_lo to %b_hi step %c1 {
) %j = memref.load %b_indices[%jj] : memref<?xindex>
) %bkj = memref.load %b_values[%Jj] : memref<?xf64>
) %cij = memref.load %c_i_values%%j] : memref<?xf64>
) %0 = arith.mulf %aik, %bkj : f64
) %1 = arith.addf %cij, %0 : f64
) scf.if (not %filled[%j1) {
memref.store %true, %filled[%j] : memref<?xil1>
record insertion as %added[ %count++ 1 = %j

3
memref.store %1, %c_i_values[%j] : memref<?xf64>
} . .
3 sparse_tensor.compress %C, %c_i_values, %filled, %added, %count

The resulting code consists of a loop at line (1) that iterates over all rows of A and C in a dense
manner, a loop at line (4) that iterates over stored elements in each row of A, and a loop at line (8)
that iterates over stored elements in rows of B. The parts at lines (5-6) and (9-10) fetch values and
indices as seen earlier for sparse tensor inputs.

Specific to the sparse tensor output is the expand operation before a next row of C at line (2),
which yields two initially zeroed-out arrays c_i_values and filled with sizes that suffice for a
dense innermost dimension (viz. a fully expanded row of C). Arrays added and scalar count are
used to keep track of new indices when a false value is encountered in the filled array. The
internal allocation and initialization are actually moved before the loop (or preferably even shared
between loops of different kernels) by a later transformation, so that these dense assignments
are amortized over as many iterations as possible. When a new value is detected at line (14) by
encountering a false value at the corresponding position in filled, the insertion is recorded in
the bookkeeping at lines (15-16). Reading from and writing to an expanded row in C is done at
line (11) and line (18), respectively. When the row in C is exhausted, the compress operation at line
(21) executes. This operation first sorts the indices of the new entries in the row, which enables
subsequent insertion in pure lexicographical index order without costly data movement. Then the
dense arrays are reset in a sparse fashion by only iterating over changed elements using the indices
stored in added, which keeps the amount of work proportional to the number of stored elements
rather than the full dimension size.

5 SPARSE COMPILER USAGE

The previous section gave details on the design and implementation of sparse compiler support in
the MLIR compiler infrastructure. This section explores two ways to use this new support: end-to-
end support for array languages and sparse state space search for testing or library development.

5.1 End-to-end Sparse Compiler Support for Array Languages

Our long-term north star vision centered around sparse tensor types as first-class citizens enables
researchers to independently start developing new front-ends for array languages that incorporate
some form of sparsity annotations as well as adding new MLIR transformations that implement
alternative and improved sparse compiler pipelines. This vision would result in the retargetable
approach illustrated in Figure 3, where several front-ends and several sparse compilers share the
MLIR infrastructure.
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PYTACO
annotated Python N MLIR /" reference impl. N\ [ sparse /" CPUs
. — | with sparse | — ... — | LLVM | - LLVM — GPUs
sparse JAX /" | tensortypes | N\, alternative impl. IR N, TPUs

annotated Tensorflow

Fig. 3. Overview of retargetable sparse compiler support. Multiple front-ends map different sparse array
languages, such as PyTACO, to a shared high-level intermediate representation, such as Linalg with sparse
tensor types. Alternative sparse compiler pipelines, like the reference implementation, lower this interme-
diate to a form that only stores and iterates over nonzero elements. This intermediate is handed off to a
retargetable back-end compiler, like LLVM.

All paths eventually generate sparse code in some intermediate form, such as LLVM IR, which
can be handed off to a back-end compiler, like LLVM, to generate code for various target
architectures.

The end product enables nonexpert programmers to exploit sparsity easily, since, by merely
adding annotations, a single sparsity-agnostic program in, e.g., Python could map to a wide range
of sparse implementations, each tailored to specific instances of the same problem, in terms of
both sparsity properties and characteristics of the target architecture. MLIR ships with an initial
reference implementation of the sparse compiler transformations. In addition, as an example of
end-to-end support for an array language, we added PyTACO [49], which is TACO’s Python-based
domain-specific language for expressing sparse tensor algebra computations.

For example, the following PyTACO code expresses an element-wise matrix addition. The first
three lines define tensors A, B, and C. The fourth line defines the two index variables i and j. The
last line describes the actual computation, using a tensor index notation to describe how each
element in the result tensor can be computed from elements in the two source tensors.

A = tensor([1024, 1024], [compressed, dense]
B = tensor([1024, 1024], [compressed, dense]
C = tensor [1024, 1024], [compressed, dense]

j = get_ index_var(2)
Cfl 31 = ALi, 3] + BLi,3]

PyTACO supports implicit broadcast and implicit reduction. If an index variable is defined in
the iteration space but does not appear in the expression of a tensor operand, the tensor operand
is broadcast along the dimension represented by the index variable. If an index variable appears
in the expression of some tensor operands but not in the expression of the destination tensor,
then the corresponding dimension is reduced on the smallest sub-expression that captures the use
of the index variable. The following code illustrates these two rules:

Cli,j]1 = Ali,j [i] => C[i,3j] = A[i,j] + broadcast(j, BLil)
lj = Ali, Jj + B[l J] + C[i] => D[i] = sum(J, Ali,j] + B[i, ]ﬂ) + C[1i]

To support PyTACO, we implemented Python classes for sparsity annotations, index variables,
tensors, tensor accesses, and tensor expressions, as well as the dunder method __getitem__ to
process tensor accesses. A tensor access is a leaf node. Tensor expressions can participate in oper-
ations, such as additions and multiplications, to construct more complicated expressions. We also
implemented the dunder method __setitem__ to assign a tensor expression to the left-hand-side
tensor. When a tensor with an assignment is evaluated, we generate the MLIR representation for
the tensor assignment. The Linalg dialect has a generic operation that can be used to express the
PyTACO tensor computation with only one difference. That is, a reduction in the generic opera-
tion is performed on the whole expression, not on the smallest expression that captures the use of
the index variables as in the PyTACO. As such, to implement the PyTACO semantics correctly, we
need to break the following PyTACO expression:

DCil = A[i,j] + B[i,j] + C[i]
into the following two generic operations:
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T[i] = A + B
DEH = TEjJ}r cr 1[1 -3

When we need to introduce such temporary tensors, we use heuristics to estimate the spar-
sity for each dimension in the temporary tensor. In particular, if an operation only preserves zero
values from both source operands, such as an addition, we choose compressed format for a desti-
nation dimension only if both source dimensions are compressed. If an operation preserves zero
values from either source operand, such as a multiplication, we choose compressed format for a
destination dimension if at least one of its source dimensions is compressed. After generating the
MLIR code for the tensor assignment, we invoke MLIR compilation passes followed by the MLIR
JIT execution engine to execute the resulting runnable and retrieve the result for the tensor.

5.2 Sparse State Space Search

The MLIR infrastructure provides a Python interface for building, compiling, and running MLIR IR
from code. This interface provides a convenient way to loop over all possible sparse storage formats
and compiler optimizations for a particular kernel. Given the matrix multiplication kernel in which
only one matrix is sparse, for example, the code below can be used to exhaustively explore all
possible sparsity attributes attr and compiler strategies opt for building and running the kernel:
for level in [ [dense, dense], [dense, compressed],
[compressed, dense], [compressed, compressed] ]
for ordering in [ ir. AfflneMap get_| permutatlon([@
ir.AffineMap.get_permutation([1, 0]) B
for ptrWidth in [e@, 8, 16, 32, g
for indxWidth in'[@, 8, 16, 32 641:
attr = st. EncodlngAttr get(level ordering, ptrWidth, idxWidth)
mlir = buildSpMM(attr)
for opt in comgllerStrategles
exec = compileKernel(mlir, opt

result = runKernel(exec, 1nput3
verify(result)

This approach is useful to stress test the actual sparse compiler implementation, since the com-
puted result should be independent of the actual sparsity annotations or compiler optimizations
used (at least within acceptable numerical differences due to floating-point reassociation). How-
ever, the same approach can also be used by an expert programmer to exhaustively explore the
performance of a library method within the full state space of possible sparse implementations
and optimizations before deciding on which one to ship into production.

The loop nest above shows that choosing a proper format for a single sparse matrix already gives
rise to a state space of 200 configurations. For kernels with higher-dimensional or multiple sparse
tensors, the size of the state space grows further. Then, when combined with different compiler
optimization strategies, different target architectures, and different characteristics of the sparse
tensor inputs, the combinatorial explosion of the state space becomes apparent.

Although long offline running times are acceptable while exhaustively searching for the best
possible implementation of a library method that will be widely used, at some point exploring the
full state space may become infeasible, and the programmer may have to resort to using machine
learning for this exploration [77].

6 EXPERIMENTAL RESULTS

Even though our long-term objective is to provide an excellent, reusable sparse ecosystem that sim-
plifies sparse code generation for a wide variety of target architectures (CPUs, GPUs, and TPUs),
MLIR ships with a first reference implementation that provides a fully functional implementation
of the sparse ecosystem (for CPUs only at the moment). In this section, we present an experi-
mental validation of this initial reference implementation compared to the state-of-the-art TACO
compiler [49]. All measurements were taken on an Intel Xeon W2135 3.7GHz.
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6.1 Sparse Tensor Input

To validate the quality of reading tensors from files, we measured the time taken to read and pack
tensors to an all-dimensions compressed format for a few tensors with varying dimensions from
the Matrix Market [12] and FROSTT [78]. For TACO, we used the built-in timing benchmark, which
invokes GCC during execution to compile generated code. For fair comparison, we compensated
the reports to exclude compilation time. For MLIR, we used identical timing methods but the LLVM
JIT compiler as back-end. Also, since MLIR reads tensors from an extended FROSTT format with
extra size metadata in the header, it has a slight advantage reserving memory prior to reading.
Table 1 shows the results, with the relative speedup of MLIR over TACO for the total reading and
packing time in the last column. The latter gives clear evidence that the reference implementation
provides state-of-the-art performance for reading sparse tensors.

Table 1. Sparse Tensor Input (time in ms)

MLIR TACO
Tensor Dim nnz | Read Pack | Read Pack | Speedup
fidap011 2 1,091,362 228 136 262 142 1.11x
nell-2 3 76,879,419 | 9,568 2,055 | 13,303 6,974 1.74x
uber 4 3,309,490 418 107 594 398 1.89x
vast-2015 5 26,021,945 | 3,796 1,728 5,191 2,832 1.45x

6.2 Sparse Linear Algebra with Sparse Output

To validate the quality of the generated code with a sparse output, we measured the runtime of the
SpMSpM kernel C[i,3j1 = A[i,k] * B[k, j] that was discussed in Section 4.4, where the output
is a sparse matrix with a nonzero structure that depends on the nonzero structures of the input
sparse matrices. Table 2 summarizes results when applying the kernel generated by both MLIR and
TACO (explicitly combining the assemble-compute steps for the latter, since these are separated
by default) to various n X n uniform random sparse matrices with a fixed density of p4 g = 0.01,
illustrated on the left in Figure 4, as well as to a few square matrices from the Matrix Market [12]
and SuiteSparse [24, 25] used for both input arguments.

The table shows the resulting density pc for the output sparse matrix, measured runtimes, and
relative performance improvement of MLIR over TACO. Since both sparse compilers generate more
or less the same code, as expected, performance is similar. Note that the kernel’s performance
depends on the way heap memory for the output matrix data structure is reserved and reallocated
dynamically during insertions, since this is a big part of the execution profile.

Table 2. SpMSpM Kernel with Sparse Matrix Output (time in ms)

Matrix n nnz, pc MLIR | TACO | Speedup
random1K 1,024 10,458 0.10 3.4 3.8 1.12x
random2K 2,048 42,321 0.19 23.9 27,1 1.13x
random4K 4,096 167,628 0.34 2115 2253 1.07x
random8K 8,192 671,558  0.56 1,1650.3 | 1,731.1 1.05x
af23560 23,560 484,256  0.0044 443 52.0 1.19x
fidap011 16,614 1,091,362 0.0164 142.1 151.8 1.07x
xenon2 157,464 3,866,688  0.0006 348.0 371.0 1.07x
cagel3 445,315 7,479,343  0.0003 1,607.8 1670.1 1.04x
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Fig. 4. Sparse matrices (uniform random and row band).

6.3 Sparse Linear Algebra with SIMD Optimizations

To demonstrate the impact of sparse storage format selection and compiler optimizations on per-
formance, consider the following sparse matrix times vector operation, where we have a choice
for attribute SpMat:

%x = linalg.matvec ins(%A, %b: tensor<?x?xf64, #SpMat>, tensor<?xf64>)-> tensor<?xf64>

Obvious choices for an unstructured sparse matrix A as input would be formats like CSR or
DCSR, with the latter favoring sparse matrices that have many empty rows. However, for row
band matrices, illustrated on the right in Figure 4, where many rows are empty but non-empty
rows are dense, using an encoding with compressed for the outermost dimension and dense for
the innermost dimension would make more sense. Let’s call this format CDR. This format not only
enables the compiler to generate an efficient storage scheme that matches the input data but also
composes well with other compiler optimizations, such as vectorization. Eventually, the sparse
code generated for CDR by MLIR looks as follows, where the Vector dialect is used to express
a SIMD reduction in an architectural-neutral manner in the loop at lines (3-8). The reduction
operation at line (9) sums the partial results up before storing the result into vector x at line (10).

(®1; scf.for %ii = %a_lo to %a_hi step %c1 {

(02
g®3g %acc = scf.for %j = %c@ to %n step %c16 {

04 c

(05) %mul = arith.mulf %aij, %bj : vector<16xf64>

Eg?% %acc_out = arith.addf %acc_in, %mul : vector<16xf64>

8

(09) %xi = vector.reduction <add>, %acc : vector<16xf64> into f64

gw; }memref‘store %xi, %x[%i] : memref<?xf64>}

Table 3 compares the performance of the code generated for CSR, DCSR, and CDR when applied
to various n X n row band matrices where the first 1,000 rows are kept dense, so that density pa
decreases as size n increases. To take full advantage of AVX512 instructions on the target archi-
tecture along dense rows, vectorization was enabled for both compilers (built-in for MLIR and by
passing extra native flags to the TACO compilation).

Table 3. SpMV Kernel with SIMD Optimization (time in ms)

MLIR TACO
Matrix n pa | CSR DCSR CDR | CSR DCSR CDR | Speedup
rowband8K 8,192  0.12 7.88 7.85 5.22 | 10.99 10.78 6.62 1.27x
rowband16K 16,384 0.06 | 15.76 15.69  10.52 | 19.77 19.21 1190 1.13x
rowband32K 32,768 0.03 | 31.51 3141 21.07 | 38.63 37.27 2479 1.18x
rowband64K 65,536  0.02 | 77.28 72.19 4218 | 77.55 76.84  47.07 1.12x
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As expected, CSR and DCSR perform similarly, with a slight advantage in the doubly compressed
format due to skipping empty rows completely. CDR performs best. In addition, MLIR takes full
advantage of SIMD, demonstrating the utility of integrating sparse compilation into a modern
multi-level compiler infrastructure.

6.4 Sparse Linear Algebra and State Space Search

To illustrate the use of sparse state space search to find a suitable sparse storage scheme, we
conducted experiments with the well-known sampled dense-dense matrix multiplication
(SDDMM) kernel [64] that samples the result of dense matrix multiplication by means of element-
wise multiplication with a sparse matrix, expressed as X[i,j] = S[i,j] * A[i,k] * B[k,jlin
tensor index notation for a sparse matrix S.

Figure 5 plots the runtime of this kernel for different versions generated by MLIR using various
sparse storage schemes for S (left-to-right) and compiler optimization strategies (sorted front to
back). The figure clearly visualizes how an expert programmer can find the best storage format
and optimization strategy by looking for the minimum runtime in the plot (lowest point), here
corresponding to DCSR and a particular optimization setting.

Runtime of SODDMM

Runtime =
7
=
Sorted
Compiler
CSR Strategies
csc
— DCSR
Sparse Storage Format Desc

Fig. 5. Sparse runtime state space for SODDMM (lower is better).

6.5 Sparse Tensor Algebra on 3-Dimensional Tensors

To validate the quality of the generated code for higher-dimensional tensor algebra, we measured
the runtime of the Matricized Tensor Times Khatri-Rao Product, or MTTKRP for short. This ker-
nel, expressed in tensor index notation as A[i,j] = B[i,k,1] % D[1,j] * C[k,j] (viz. two
reduction loops) for a sparse 3-dimensional tensor B, forms the bottleneck of various problems in
data analytics. Table 4 shows the runtime of this kernel for various tensors of FROSTT [78] and
HaTen2 [43]. Following the TACO convention, the unknown output dimension is set to 42. For
example, the 12092 X 9184 X 28818 input sparse tensor nel1-2 is assumed to generate a 12092 X 42
output matrix. For both MLIR and TACO, we measured the time for the sparse versions gener-
ated for formats with an outermost dense and two innermost compressed dimensions and default
lexicographical index order (DSS-ijk), as well as an alternative format with dimension ordering
that interchanges the two innermost dimension (DSS-ikj). The latter may come at the expense of
slightly higher packing times to sort from an original lexicographical order in the external format.
The table reveals potential advantages of alternative dimension orderings.
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Table 4. Matricized Tensor Times Khatri-Rao Product Kernel (time in ms)

MLIR TACO
Tensor nnzg | DSS-ijk  DSS-ikj | DSS-ijk  DSS-ikj | Speedup
darpa1998 28,436,033 1,548 1,556 1,655 1,801 1.07x
nell-2 76,879,419 1,752 1,351 2,095 1,668 1.24x
freebase-sampled 139,920,771 8,504 8,379 12,168 12,531 1.45x
nell-1 143,599,552 12,063 11,878 13,538 12,909 1.09x

6.6 Sparse Tensor Algebra with Sparse Output

To validate the quality of code generated for tensor algebra with a sparse output, we measured the
runtime of the TTM kernel C[i, j,k] = A[i,j,1] * B[k, 1] for sparse tensors A and C and a dense
matrix B. Using formats with an outermost dense and two innermost compressed dimensions
together with default index storage allows both MLIR and TACO to generate direct insertions in
pure lexicographical index order, without the need for access pattern expansion (a.k.a. workspace).
Table 5 summarizes results when applying the kernel generated by both MLIR and TACO, again
combining the assemble-compute steps for the latter and using 42 for the now unknown input
dimension. The table shows the number of nonzero elements in the input and output tensors as
well as the runtime for the code generated by MLIR and TACO. Even though the generated code
is similar, TACO inlines the lexicographical insertion code, whereas MLIR uses individual virtual
method calls into a support library, which is something we plan to improve in the future. As before,
performance depends on the way heap memory for the output tensor is reserved and reallocated
dynamically during the insertions.

Table 5. TTM Kernel with Sparse Tensor Output (time in ms)

Tensor nnz, nnzc MLIR TACO | Speedup
darpal998 28,436,033 3,209,808 6,427 6,478 1.01x
nell-2 76,879,419 14,169,330 11,382 11,574.1 1.02x
nell-1 143,599,552 729,641,514 | 103,793 | 137,468.0 1.32x

7 RELATED WORK

This section discusses related work, organized by sparsity support in compilers and libraries.

7.1 Sparse Compilers

To the best of our knowledge, Bik and Wijshoff were the first to propose the concept of treating
sparsity merely as a property and letting a sparse compiler generate sparse code automatically from
a sparsity-agnostic definition of the computation [9], which resulted in the MT1 sparse compiler
for linear algebra [7, 10]. This Fortran compiler first evaluates an attribute grammar to associate
sparse conditions for execution with all expressions and statements in the input program. Then,
driven by annotations and automatic nonzero structure analysis of representative sparse input
matrices [11], the program is automatically converted into a form that only stores and operates
on nonzero elements for unstructured and structured sparse matrices. Code generation featured
conjunctions and disjunctions, access pattern expansion, and sparse matrix outputs. Using this
sparse compiler for automatic sparse library generation was demonstrated in [8] for linear algebra
primitives.
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The concept of generating sparse code from dense abstractions is shared with subsequent work.
The Vienna-Fortran/HPF sparse extensions [88] provide High-Performance Fortran language fea-
tures where users can characterize a matrix as sparse and specify the associated representation
for its underlying compiler. The Bernoulli project [53, 61] generates efficient serial and distributed
sparse matrix code from HPF dense DO-ANY loops through relational algebra. By viewing ar-
rays as relations and execution of loop nests as evaluation of relational queries, the problem of
effectively traversing the sparse iteration space becomes finding optimal select and join sched-
ules. However, users must provide access methods for their sparse data storage, which can be
a significant learning curve. The SIPR framework [69] applies compilation to sparse algorithms
with auxiliary data structures, such as a sparse accumulator [33]. It represents sparse programs as
a combination of dense algorithms, utilizing existing C++ libraries, and dynamic sparse storage
specifications, mapping array references and loop iterations to storage formats and array access
descriptors. SIPR supports a limited number of sparse matrix formats (Compressed Stripe Storage).

Compared to the MT1 compiler and the follow-on systems above, the system described in this
article produces code for tensor algebra instead of linear algebra. It also generates code from high-
level tensor expressions instead of Fortran code with arrays. Furthermore, it supports arbitrary
fusion of sparse and dense tensor algebra expressions, leading to code that co-iterates over any
number of matrices. Finally, it generates code using a different compilation approach.

Sparse compilation was formalized and generalized to sparse tensor algebra in TACO (Tensor
Algebra Compiler) [48—51]. Starting with a “loopless” tensor index notation, the programmer an-
notates tensors as sparse, and the framework generates corresponding C++ or CUDA code. TACO
was the first to propose the elegant way of expressing desired sparse storage schemes with a com-
bination of per-dimension level types and a dimension ordering. The dimension level types were
expanded by Chou et al. [18] to include more sparse storage formats. Kjolstad et al. [50] were also
the first to present a sparse iteration model that drives sparse code generation by topologically
sorting the iteration graph to find a suitable index order and using iteration lattices to emit loops,
conditions, and tensor expressions for every index in topological order. For this, TACO provides
the co-iteration formulation that can be used to generate code to co-iterate over any number of
sparse and dense tensors, which is necessary for general kernel fusion. Kjolstad et al. [50] and
Senanayake et al. [76] also extended the TACO compiler with a scheduling language that lets
users (or automatic systems) organize the iteration over tensor expressions, which lets them tile,
control fusion/fission, statically load-balance, and generate GPU code for sparse tensor algebra
kernels. Sparse tensor support in MLIR borrows heavily from the foundation laid by TACO, with
additional challenges of making our IR fit well within the MLIR stack, automatically benefiting
from optimizations from upper layers and vectorization from lower layers, and generalizing to
sufficient support of diverse hardware in underlying layers.

Taichi [41] is a programming language that offers a data structure-agnostic interface for writing
computation code. The user specifies the data structure with different sparsity properties indepen-
dent of the code to create a wide range of sparse data structures. As with the approaches above,
decoupling data structures from computation simplifies experimenting with different data struc-
tures without the need to change the actual computation code. The system described in this article,
however, supports arbitrary tensor algebra expressions with multiple sparse operands.

COMET [62, 86] is an MLIR-based compiler infrastructure for dense and sparse tensor algebra
computations. It uses a dimension-wise sparse storage scheme and a code generation algorithm
similar to TACO, but has more performance portability building upon MLIR. Users describe tensor
algebra expressions with Einstein summation notation and sparse tensor format tags in COMET’s
DSL. The DSL is mapped to a custom Sparse Tensor Algebra dialect, which is progressively lowered
to LLVM IR through MLIR dialects. Among compiler-based approaches, COMET’s is the closest
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to ours. COMET has more optimizations, such as data reordering [58], while our work is focused
on enabling native and seamless sparse tensor support throughout the MLIR stack. This lets us
leverage existing dense MLIR code with just minor changes, including integrations with higher-
level frameworks like TensorFlow [1] and JAX [13]. We believe both COMET and our work can
benefit from each other and look forward to when COMET is open source.

Henry et al. [40] generalized the sparse tensor algebra compilation theory from TACO [51] to
support compilation of general dense and sparse array expressions, laying the foundation for a
sparse NumPy-style system. In this system, arrays (tensors) can have any implicit fill value and
any function can be computed across sparse and dense arrays. The new scheme covers sparse iter-
ation spaces outside of union (addition) and intersection (multiplication) for arbitrary user-defined
functions. It can also iterate over slices or strides of sparse arrays, allowing for a much wider range
of kernels and applications. Our infrastructure can be extended to support this concept.

Another line of work is to directly optimize sparse code, i.e., codes that deal with compressed
data structures. These optimizations are applicable to our work. The main difference is that users
have to write the starter code, which can be tedious and error-prone, especially when process-
ing high-dimensional tensors. SPARSITY [42] provides a framework that automatically applies
register and cache optimizations to sparse matrix codes based on machine-specific performance
models. LL (Little Language) [4] is a small functional language aiming to increase programming
productivity of sparse operations. It provides built-in nested list and pair types, with which users
can naturally represent compressed matrices in many formats. Sparse computations are defined
through a data flow graph. The compiler can generate efficient, fully verified C code. Sympiler [17]
symbolically analyzes sparse codes at compile time and performs code optimizations specific to
sparsity patterns.

The Sparse Polyhedral Framework (SPF) [83] provides code and data transformations for non-
affine loop bounds and array index expressions [91] that can be combined with existing trans-
formation in a polyhedral framework. Each transformation controls whether a dimension in the
sparse iteration space is traversed fully (make-dense) or sparsely (compact), with an option to pad
the underlying data storage for that dimension (compact-and-pad). The generated code is akin to
converting sparse tensors to specific layouts and then performing the computation. SPF can cover
a large variety of tensor storage formats, at the expense of users having to write a sequence of
transformations to produce the desired computations. TIRAMISU [5] is a polyhedral compiler for
deep learning that maps sparse and recurrent neural networks to the polyhedral model in order
to generate highly optimized sparse code for the target architecture. As opposed to these systems,
the system described in this article can handle general tensor algebra expressions and can fuse
across any number of sparse operations.

7.2 Sparse Libraries and Kernels

A large number of applications build upon sparse computation library primitives optimized for
their target architectures instead of compilers. This section discusses how sparse libraries evolve
over time to support increasing kernel requirements such as higher dimensionality, better pro-
grammability, and more data types, operations, and devices.

Classic sparse linear algebra binary libraries like MKL [93] and cuSPARSE [63] implement sparse
basic linear algebra subroutines with few data types. More recent generic C++ libraries such as
Eigen [34] and CUSP [23] allow writing math-like expressions and can support more data types.
The OSKI [92] library offers automatically tuned sparse matrix CPU primitives for linear solvers
with an easy-to-use interface. PETSc [6] is a library of scalable PDE solvers that has modular struc-
ture and multiple abstraction layers, making it easy to add support for new devices, kernels, data

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 50. Publication date: September 2022.



50:20 A. Bik et al.

types, and so forth, including new sparse matrix formats [54]. It can also be integrated with a
compiler-based autotuning approach to further optimize its hotspot kernels [70].

Matrix algebra can be beneficial in graph processing [36]. The GraphBLAS [46] standard spec-
ifies a core set of general sparse matrix-based graph operations, e.g., generalized matrix opera-
tions over arbitrary semi-rings (replacing element-wise addition and multiplication with other
operators), providing additional operation coverage to common sparse linear algebra libraries.
There are many libraries implementing this standard [3, 16, 24, 95], targeting CPU and GPU
devices.

In scientific computing, most common sparse tensor computations are tensor decomposi-
tions [52] and contractions [45, 66]. The Cyclops Tensor Framework [81, 82] is a C++ template
library for distributed dense and sparse tensor algebra targeting the quantum chemistry domain.
Through operator overloading, users can write tensor algebra expressions with Einstein summa-
tion notation directly in C++, e.g., C["hij"] += A["ijhk"] * B["hkij"]. It supports templated
data types and can substitute element-wise operations in tensor addition and contraction with
other operations through user-defined algebraic structures (e.g., semi-rings, groups, etc.). Among
library-based approaches, CTF is the closest related work to ours due to its expressiveness. How-
ever, it supports few sparse storage formats, and we found that its sparse kernel performance lags
behind a compiler-generated solution.

The rising popularity of deep learning poses new challenges to sparse libraries, e.g., new sparsity
characteristics, kernels, data types, hardware accelerators, and so forth. While there are libraries
such as Sputnik [31], cuSPARSELt [21], and LIBXSMM [38] adding new kernels and data types
specific to deep learning, these kernels still have limited composability and portability.

Specializing sparse kernels for specific sparsity characteristics or hardware architecture can
bring significant performance gains. Numerous applications implement custom sparse formats
that better suit their sparsity patterns and target hardware [14, 15, 57, 65, 72, 74, 75, 80, 87].

Recent studies [67, 94, 96] on sparse matrix format classification using machine learning deter-
mine the best input storage format to maximize the performance of a particular kernel. Only a
small number of matrix formats were compared, because each of them needs separate implemen-
tation. With our work, an arbitrarily large number of formats can simply be explored as compiler
tuning knobs [77].

8 CONCLUSIONS AND FUTURE WORK

In this article, we proposed treating sparsity as a property, not a tedious implementation task, and
showed how the concept of letting a sparse compiler generate sparse code automatically from
a sparsity-agnostic definition of the computation is being integrated into the MLIR open-source
compiler infrastructure. MLIR’s ease of defining multi-level abstractions and transformations com-
poses well with this idea of making sparsity a property. We discussed the advantages of sparse
compilation as well as our north star vision of providing an excellent, reusable sparse ecosystem
by introducing sparse tensor types as first-class citizens into MLIR. A reference implementation
provides a fully functional implementation of this sparse ecosystem. We discussed two ways of
using sparse compiler support in MLIR, namely, end-to-end support for sparse array languages
and using a state space search for sparse library development. Lastly, we provided experimen-
tal validation that the reference implementation compares well to the state of the art in sparse
compilation.

The MLIR project was in part started to provide an extensible and powerful compiler infrastruc-
ture for domain-specific languages. Of particular interest was dense tensor algebra for deep neural
networks. But while dense tensor computations remain the bulk of machine learning workloads,
sparse neural networks are increasingly being explored, whether weight-sparse, activation-sparse,
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or input-sparse such as graph convolutional neural networks. With the MLIR sparse compiler,
we seek to put compilation for sparse tensor algebra on the same strong footing as compilation
for dense tensor algebra. We believe this is necessary to enable both efficient exploration and
efficient computation of sparse computations in machine learning and in data analytics. In fact,
classical compiler transformations for dense tensor computations, such as loop reordering, fusion,
and fission, can be even more important for sparse computation, as getting loop ordering and fu-
sion/fission wrong often leads to asymptotically worse complexity. This effect occurs even in staple
computations like sparse matrix-matrix multiplication and sampled dense-dense matrix multiplica-
tion, which are used in sparse neural networks. The MLIR sparse compiler is positioned to address
these challenges and we are therefore excited about its potential.

The contribution of this work has been the introduction of a reusable sparse ecosystem in a
powerful and extensible open-source compiler infrastructure. By providing a solid foundation cen-
tered around sparse tensor types as first-class citizens together with a completely functional sparse
compiler pipeline, future research can immediately explore new ideas and experiment with alter-
native approaches. Since transformations in MLIR compose well, experimental results will not be
hampered by the lack of supporting optimizations, as is often the case with ad hoc prototypes of
new ideas. Going forward, our hope is that the open-source nature of this project will not only
benefit researchers that are new to the sparse domain but also solicit useful contributions from
experts in the open-source community at large. We are looking forward to such contributions and
hope that our project contributes to advancing sparse compiler research.

Although the system we have described in this article lays a strong foundation for sparse ten-
sor algebra compilation in the MLIR infrastructure, there are several limitations that should be
addressed in future work. First, the system does not currently support loop collapsing and tiling,
which precludes certain locality-enhancing optimizations. Second, it does not currently support
compilation to GPUs or other accelerators such as the Google TPU. Third, it supports formats that
can be constructed from dense and compressed data structures, such as CSR, CSC, DCSR, DCSC,
BCSR, and CSF, but not currently those that need more sophisticated data structures, such as ELL,
DIA, HiCOO, ALTO, and hash maps, which can sometimes better take advantage of certain ten-
sor structures or hardware features. And finally, it does not currently support automatic format
selection. We believe all of these limitations can be addressed in future work. For example, tiling
and mapping to GPUs could be expressed by adding a scheduling language, and more data struc-
tures could be supported by better format abstractions. To address these limitations, we invite
contributions from the open-source and research communities.

Furthermore, we believe the performance of the system described in this article could be im-
proved. As we have shown, the current system has excellent performance. However, properly
mapping parallel and SIMD constructs to the parallelism provided by the target architecture is
also on ongoing topic of investigation. Finally, we believe it is possible to expand the language
supported by the compiler beyond tensor algebra. One such extension would be to support gen-
eral array language constructs in the same intermediate representation, such as the application of
nonlinear functions across tensors. A second extension would be to support kernels with complex
access patterns such as sparse convolutions or direct solvers that exhibit “fill-in” on sparse tensors
during the computation. A third extension would be to support the data reorganization operations
and tensor generators, such as reshaping and concatenating tensors and generating identity ten-
sors, that are common in machine learning frameworks. Finally, another interesting direction of
future work would be to introduce set-oriented looping constructs to MLIR, which would enable
a more gradual progressive lowering into sparse code, since the current direct lowering to SCF
bridges a rather wide semantic gap. As before, we welcome the open-source and research commu-
nities to contribute to these and other extensions.
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