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REPTILE: Performant Tiling of Recurrences

MUHAMMAD USMAN TARIQ, Stanford University, USA
SHIV SUNDRAM, Stanford University, USA
FREDRIK KJOLSTAD, Stanford University, USA

We introduce REPTILE, a compiler that performs tiling optimizations for programs expressed as mathematical
recurrence equations. REPTILE recursively decomposes a recurrence program into a set of unique tiles and
then simplifies each into a different set of recurrences. Given declarative user specifications of recurrence
equations, optimizations, and optional mappings of recurrence subexpressions to external libraries calls,
REPTILE generates C code that composes compiler-generated loops with calls to external hand-optimized
libraries. We show that for direct linear solvers expressible as recurrence equations, the generated C code
matches and often exceeds the performance of standard hand-optimized libraries. We evaluate REPTILE’s
generated C code against hand-optimized implementations of linear solvers in Intel MKL, as well as two non-
solver recurrences from bioinformatics: Needleman-Wunsch and Smith-Waterman. When the user provides
good tiling specifications, REPTILE achieves parity with MKL, achieving between 0.79-1.27x speedup for
the LU decomposition, 0.97-1.21x speedup for the Cholesky decomposition, 1.61x-2.72x for lower triangular
matrix inversion, 1.01-1.14x speedup for triangular solve with multiple right-hand sides, and 1.14-1.73x
speedup over handwritten implementations of the bioinformatics recurrences.

CCS Concepts: » Software and its engineering — Domain specific languages; Source code generation.
Additional Key Words and Phrases: recurrences, tiling, code generation, linear solvers, BLAS/LAPACK
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1 Introduction

Recurrence equations are ubiquitous in engineering, optimization, and scientific computing. These
equations describe how to compute a value of a sequence based on previous values in the same
sequence. They are particularly useful for expressing compute-bound linear solvers, such as the
Cholesky decomposition, LU decomposition, and triangular solve.

Recent work by Sundram et al. [2024] showed how to compile recurrences to native code. A
recurrence compiler allows users to separately specify mathematical recurrence equations and
performance optimizations, which the compiler then lowers to imperative loop nests. The generality
of such compilers allows for rapid prototyping, in which users can quickly generate programs
for arbitrary recurrences and quickly experiment with different performance optimizations. For
most memory-bound recurrences, recurrence compilers can generate code that is competitive with
handwritten libraries. However, for recurrences that are compute bound and have exploitable
reuse, such as direct linear solvers, the generated code does not match the performance of the
hand-optimized routines found in libraries such as BLAS and LAPACK.
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While a recurrence compiler achieves reasonable performance for a general set of problems,
BLAS and LAPACK libraries achieve high performance for a limited class of algorithms that
includes solvers. Performant solvers are the result of significant hand tuning and optimization,
particularly as they employ loop tiling to utilize on-chip caches and specialize tiles to different
types of computations. The effort to hand-optimize solvers makes it difficult to write new variants
or to tune them for new machines and architectures with different levels of parallelism or different
cache hierarchies. Thus, solver libraries are often optimized for a specific architecture and specific
problem sizes, and they often need to be re-tuned, or even partially rewritten, to adapt to different
architectures and inputs. Moreover, each solver recurrence can have multiple valid loop orderings
with different performance tradeoffs, can be implemented with different tiling decisions, can call
different hand-optimized subroutines for tiles, and can have fused or unfused loops. Since the space
of optimizations is large, and depends on the input size and target architecture, it is impractical to
hand-write kernels for every combination, which motivates a compiler approach.

When direct solvers expressible as recurrences are tiled, each tile can potentially be specialized
and thus be computed with a different hand-optimized library subroutine. For example, if a Cholesky
factorization is tiled column-wise, it gets split into four tiles, where one computes a recursive
Cholesky, one a triangular solve, one a symmetric ranked update, and one a matmul. Each of these
has existing library routines that can be used to accelerate the computation. Frameworks like
FLAME [Gunnels et al. 2001], PLASMA [Bosilca et al. 2011], and ReLAPACK [Peise and Bientinesi
2016] utilize this recursive decomposition, but do not provide the ability to generate code for an
arbitrary recurrence solver. In addition, they do not compose calls to external library routines with
generated code, and do not let users specify a desired loop ordering. To attain high performance
across architectures, it is important to have control over how a recurrence-based solver recursively
decomposes into other routines under different loop orderings, to decide how deep to unroll this
recursion, and to control how to map the resulting linear algebra routines to external functions.

We present a compiler technique that tiles user-provided recurrence equations and generates
efficient C code. Given a specification of what dimensions to tile and the tile sizes, our compiler
automatically determines what must be computed in different tiles, enforces the recurrence’s
dependencies, and gives the user the opportunity to map the different tiles to third-party library
routines that are available. The major contributions of this paper are:

(1) A method that recursively decomposes an arbitrary recurrence equation into specialized tile
recurrences.

(2) A scheduling language in which the user can specify tiling directions and sizes, along with
mappings of tiles to external calls.

(3) A C code generation algorithm that lowers tiles to executable C code. The algorithm
handles both inter-tile and intra-tile dependencies, and the generated C code implements the
recurrence with the user-provided optimization, tiling, and mapping decisions.

We developed a prototype compiler called REPTILE (Recurrences with Performant Tiling).
REPTILE tiles the iteration space of a system of arbitrary recurrence equations, creating unique tiles
containing different recurrences. It then lowers these tiles to C code, while respecting dependencies
between tiles, that matches tiles to optimized library calls as specified by the user. By mapping tiles
to existing linear algebra subroutines, we show that the generated code matches or exceeds the
performance of existing libraries like BLAS and LAPACK, while maintaining the ability to handle
any recurrence in our recurrence language.
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2 Motivating Example

To demonstrate the tiling strategy of our recurrence compiler, we use the Cholesky decomposition
as a running example. The Cholesky decomposition is a commonly used matrix decomposition for
solving systems of linear equations. It factors a symmetric positive-definite matrix A into a lower
triangular matrix L such that A = LLT. The routine has O(n®) complexity, and implementations are
typically hand-optimized to get good performance. The Cholesky decomposition can be concisely
expressed as the two mutually dependent recurrence equations shown in Figure 1 (left). These
recurrences calculate elements of L by computing on previously calculated elements of L.

Cholesky(A, L, n):

for j from 0 to n:

Aij — > 5 Lin Ly

Lij: :k<j<i for k from 0 to j:
ij for i from j to n:
. L[i,j] += L[i,k] * L[],K]
Lij = [Az — Y LiLjp:k<j L1331 = sqre(AL3,31 - LO3,31)
k for i from j+1 to n:
L[i,j]1 = (A[L,j] - LIi,31) / LI§,5]

Fig. 1. The Cholesky matrix decomposition. Left: the recurrence equations for calculating Cholesky. These
equations calculate elements of the output L by using previously calculated values of L lying in previous
columns and rows. Right: a naive jki implementation of Cholesky expressed in an imperative IR. The loop nest
exhibits poor memory locality and data reuse and does not match the performance of handwritten libraries.

Using the RECUMA recurrence compiler [Sundram et al. 2024], the Cholesky equations can be
compiled to the loops in Figure 1. These loops use the user-defined jki loop order, and thus compute
the matrix column by column, where each column depends on previously computed columns.

This naive implementation, however, has poor performance due to its memory access patterns.
Modern computer architectures have multiple levels of caches, and efficient implementations must
take advantage of this cache hierarchy. The naive implementation will iterate over full rows and
columns repeatedly, leading to poor cache utilization. By the time a value is needed again, it has
likely been evicted from cache, resulting in expensive memory accesses. To improve performance,
it is necessary to improve data reuse by ensuring that cached data is reused before it is evicted.

The solution is tiling, where instead of computing columns sequentially, we compute multiple
adjacent columns as a group, as shown in Figure 2. In this way, the program iterates over blocks of
the output tensor, in which a columnn block is small enough to fit in a cache. Throughout this paper,
we refer to subregions of the program’s iteration space as tiles, and the corresponding subregions of
the output tensor as blocks. Figure 2 shows how instead of calculating a full, individual, column at
a time, the blue block (2) is fully calculated before the green block (4). This ensures that operations
on a block are completed before it gets evicted from the cache, reducing the need for repeated data
reads. The tiling strategy shown in Figure 2 divides the computation into groups of columns, where
one of the groups spans columns from j0 to j1. Furthermore, within the group, we can see the blue
and green regions, which we call the diagonal and non-diagonal block here respectively. The blue,
diagonal block (2) spans rows jO to j1 and the green, non-diagonal block (4) spans rows j1 to n.

The code for computing each of the diagonal and non-diagonal block is different. This is because
different parts of the input recurrences’ expression get evaluated to compute the blue region than
to compute the green region. Furthermore, in the case of Cholesky decomposition, output blocks
are dependent on entries computed in previous blocks. Therefore, we have two loop nests for the
diagonal block, where each loop nest represents a tile of the program’s iteration space. Here, a
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Input Recurrence Tiled Loops Tile Specific Recurrences

POTRF (Cholesky)
Lij= (A=Y L) /Lig :h<j<i
-

CholeskyTiled(A, L, n, tile_size):
num_tiles = n / tile_size
for each tile t from @ to num_tiles:
jo = t * tile_size
jl = (t + 1) * tile_size
tk<j=1

A — Z LjxLix
k

# diagonal block SYRK

j1

j1

/" Read: 1,2
L Write: 2

Read: 2

Read: 1,3,4
Write: 4

{ Read: 2,4
Write: 4

for j from j@ to jl:
for k from @ to jO:
for i from j to ji:

for j from jo to ji1:
for k from jO to j:
for i from j to jl:
L[i,3] += L[i,k] * L[5,K]
L[3,3] = sart(A[3,3] - L05,3DD
for i from j+1 to jl:

L[i,3] = CA[i,3] - L[E,31) 7 L05,30 -7

# non-diagonal block
for j from jO to jl:
for k from @ to jO:
for i from j1 to n:
L[i,3] += L[i,k] * L[3,k]

for j from j@ to jl:
for k from jO to j:
for i from j1 to n:
L[i,3] += L[i,k] * L[3,k]
for i from j1 to n:

} L += (> LaLs)

j<i

\ POTRF
d Recursive
/ See top left

GEMM

Lij+= (3 LinLir)
k

TRSM

| Ly =
! LJJ'

k<j

L[i,3] = (ALi,3] - L[,300 / L0530

J

Fig. 2. Tiled Cholesky decomposition. The triangular blue block (2) now gets fully computed before the
rectangular green block (4) is computed. This displays better locality than the naive solution. Each block
requires two different tiles to compute, and each tile corresponds to a different linear algebra subroutine
shown on the right. There is notably a recursive call to a smaller Cholesky decomposition (POTRF) to compute
block 2. All four subroutines are commonly found BLAS/LAPACK subroutines. Note that j’s tiling bounds j0
and j1 appear on the i axis as well. On the i axis, jO and j1 represent the the current values of those tiling
bounds, now projected onto the i axis. This projection allows easy representation of diagonal blocks.

tile is defined as a subset of the program’s iteration space. The first loop nest (i.e., tile) reads from
previously computed blocks and writes to the diagonal block, while the second tile finalizes the
computation for the diagonal block. Each of these tiles include different code; the two loop nests
that compute the diagonal block implement a SYRK and POTRF operation respectively, both of
which are common linear algebra kernels. Similarly, for the non-diagonal block, we also have two
loop nests, where the first one implements a GEMM and the second one implements a TRSM. Each
tile is thus associated with a unique subroutine, and each of these four routines are commonly
implemented linear algebra routines:

(1) SYRK (Symmetric Rank-K Update): This operation represents the reads from previous blocks,
and multiplying the previous block by its own transpose, to make partial, symmetric updates
to the diagonal block (blue triangular region 2).

(2) POTREF (Positive definite matrix, Triangular Factorization): This operation finalizes the
computation for the diagonal block with a per-tile Cholesky decomposition.

(3) GEMM (Matrix Multiply): This operation represents reading previous blocks, multiplying
them together, to make partial updates to the non-diagonal block (green square region 4).

(4) TRSM (Triangular Solve Multiple Right Hand Sides): This operation finalizes the computation
for the non-diagonal block with a per block triangular solve.
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Mosaic Recuma

Constint n
Tensor t
IndexVar o
Index i = ov+n|n
TensorAccess ta == tl’+
Expr e u= tal), e| const
Recurrence Tiling: - | \/E | e+e | ee | e
B i Recurrence r = fla=e
Inter/Intra-Tile Dependencies Constraint 4 = v<i | v<i | v=1i
Constraints ¢s == c¢|ccs
ConstrainedRec c¢r == r:cs
Reptile Program p == cr|crp

Fig. 3. REPTILE’s delta with existing tensor

algebra and recurrence compilers. Fig. 4. Grammar for the recurrence language.

Thus, the tiled Cholesky decomposition code can be expressed as a series of subroutines, in which
all four subroutines are used to calculate a contiguous group of columns. For this example and many
other input recurrence equations, once the set of input recurrences is tiled, we can further optimize
the computation by computing each resulting tile with an optimized linear algebra library kernel
(if one exists). This allows us to get performance matching that of state of the art implementations.
However, doing this requires knowing how to tile the recurrence while respecting the recurrence’s
dependencies, and it also requires knowing how to map a tile to corresponding library routine(s).

3 Background

We show how to develop a general framework that tiles, lowers, and optimizes recurrence programs
with a mix of external kernels and compiler-generated loops. We build on the RECUMA recurrence
language of Sundram et al. [2024], but our key contribution in REPTILE is a novel technique
for tiling recurrence equations. In particular, we describe a compiler that can (1) generate tiles
of different shapes, (2) identify different computations (i.e., recurrences) for different tiles, and
(3) manage dependencies between tiles. In addition, we use the ideas from the Mosaic system
for external plugins developed by Bansal et al. [2023] to generate code that calls out to external
functions for the tiles in the code that REPTILE generates. However, in contrast to Mosaic, which
is a tensor algebra compiler, we adapt this plugin system to recurrence equations.

Figure 3 shows how our approach relates to the RECUMA and Mosaic approaches. We adapt
the input language of RECUMA and the mapping mechanisms of Mosaic, but introduce new
mechanisms to address the problem of tiling recurrences. The grammar for the RECUMA [Sundram
et al. 2024] input language of recurrences is shown in Figure 4. The recurrence language is defined
by the following three features not found in tensor algebra, each of which makes tiling recurrences
more complicated than tiling regular tensor algebra expressions:

Index Variable Constraints — different tile shapes Recurrence equations, unlike basic
tensor algebra, support constraints that bound the domain of index variables in terms of
other index variables as equalities or inequalities of index variables (e.g., j = i or j < i). Thus,
tiles in recurrences may have different shapes, such as the triangular and rectangular tiles in
Figure 2, whereas tiles in tensor algebra are always rectangular.

Multiple expressions and non-distributive functions — different tile computations
Recurrence programs may contain multiple interleaved recurrence expressions that compute
different parts of the result, as seen in the Cholesky decomposition example. Likewise, tiles
may compute different expressions, whereas tiles in tensor algebra programs compute the
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Recurrences Ordered Tiles Recurrence Index Notation

Air — LiLn Cholesky (A, L, n):
L1]:M:k<j<i Lij += Y LacLjk 0<k<jO<j<i<jl for t:
L]J k

syrk([L,L],[1,j,k,0,j0,j0,j11)

.
Ly= Ay =S LinLin k< j A — potrf([A,L],[1,3,k 30,i11)
s Ly— =S Lalie g i gemm([L,L1,[i,3,k, 0,30,30,31,51,N])

Ljj trsm([A,L,L],[1,3,k,j0,31,31,iN])

Schedule
Lij= |Aij =) LixLjr:j0<k<j==i<jl
loop_order = jki #tile j 3 J ; KLk + ] J J l
tile_size = 1000 | Ry

mappings = [TRSM, GEMM, ...]

. o . R void* reptile_chol(double* L, double * A,
Lij += ZLWLM. 0<k<j0<j<jl<i<N int tileSize, int n)

™ int nTiles = n/tileSize;
for (int t=0; t<nTiles t++){

Registered Mappings

BTHS"% e : int 0 - totileSize;

_ Orim 2 Ly Ayj — > LikLjx . L . ~ int j1 = (t+1)*tileSize)
Kri o LL,:% Lj0<k<j<jl<i<N

L v . ji //tile 1: SYRK
No <j<i<Ni, N2<r<Ng ext_mkl_dsyrk(L, L, 0, 30, j0, 1, n);

Fig. 5. Overview of REPTILE’s input recurrences, mappings, simplified recurrence in tiles, and IR (which is
then translated to C code). The resulting code can contain function calls, or loops with compute statements
(as shown in Figure 1), or a mix of both.

same expression. Moreover, recurrences that include operations that compute on the result
of a reduction must only compute the operation on the last tile.

Dependencies — tile ordering Recurrences are in-place computations that use previously
computed values to compute the current value. Similarly, a tile may be dependent on previ-
ously computed tiles. Tiled recurrence programs must consider correct orders in which to
compute the tiles, whereas all of tensor algebra is embarrassingly parallel. REPTILE manages
these dependencies through its hierarchial dependency management system, operating both
at the inter-tile and intra-tile levels.

While existing tensor algebra compiler techniques serve as an important foundation for tiling
computation heavy workloads, they fundamentally require inputs to be embarrassingly parallel,
compute only one expression, and have rectangular iteration domains. Recurrences, on the other
hand, have these additional requirements. A tiled recurrence compiler must generate tiles of
different shapes, tiles with different computations, and handle inter-tile dependencies. It must
include new mechanisms to deduce which recurrences are computed in each tile. Moreover, it must
identify the sub-expression of each such recurrence to compute in the tile. It therefore should take
in a system of recurrences described in a recurrence language, and emit a set of tiles, in which each
is associated with a unique system of simplified recurrences it computes. Once tiles of simplified
recurrences are generated, it should be able to follow a user-provided specification that determines
whether code for each tile will be compiler-generated loops or a call to an external function.

4 Overview

REPTILE is a recurrence compiler that applies a user-specified tiling strategy to recurrence equations
and then compiles them to a mixture of C code and calls to optimized external library functions.
Figure 5 presents an overview of REPTILE, showing the key stages of compilation from the input
recurrences to the final, generated C code.

The compiler takes in two inputs: the recurrence equations expressed in a recurrence language, a
schedule specifying loop order (which determines the tiling direction, e.g., tiling rows vs. columns),
tile size, and external function mappings. The recurrence equations are expressed in the same
recurrence language as the RECUMA system of Sundram et al. [2024], in which summations and
element wise operations operate over indexed tensors and in which iteration variables can be
related to each other via equality or inequality constraint that appear after a colon. One example is
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# Define input recurrences for Cholesky

cholRec1 = Recurrence("L[i,j] = (A[i,j]-sigma(k,@,j, L[Jj,kI*xL[i,k]1))/LLj,J] : @<=k<j<i<N")
cholRec2 = Recurrence("L[i,j] = sqrt(A[i,jl-sigma(k,@,j, L[j,kI*L[j,k])) : @<=k<j==i<N")
recProgram = RecurrenceProgram([cholRec1, cholRec2])

# Register TRSM as an external function:

# Define its capability as a recurrence:

1ib['trsm'].capability = Recurrence("X[r,i] = (B[r,i] - sigma(j,N@,i,M[i,j1*X[r,j1))/M[i,i]
: NO<=j<i<N1, N2<=r<N3")

# Define its function signature:

lib['trsm'].func = "trsm([B,M,X], [r,i,j, NO,N1,N2,N3])" #RIN signature

# Map variables and tensors from capability to input recurrence

# Formal arguments in the signature are replaced by actual arguments in mapping below

# Using the registered signature, map B->A, M->L, X->L, and all variables and tile bounds
mapping = "trsm([A,L,L], [i,j,k, jo,j1,31,N1)"

# Assign mapping to schedule, define tilesize and loop order
recProgram.schedule.ordering = [j,i,k] # tiling direction is j, the first var
recProgram.schedule.tileSize = 1000

isValidMap = recProgram.schedule. (mapping, lib[tri]) # apply map if valid

rin = recProgram.codeGen() # generate RIN with trsm tile mapped to trsm function
output = rin.cCodeGen() # convert RIN to C code

Fig. 6. REPTILE user code for column tiled Cholesky decomposition with mapped TRSM.

the equation A; = 3; A; : j < i, in which every element is the sum of every previous element. The
Cholesky recurrences shown in Figure 1 are also expressed in this recurrence language.

These recurrence and scheduling inputs undergo two lowering passes in REPTILE. The first pass
lowers the input into tiles, which are recurrences that operate on smaller and disjoint subsections
of the computation’s iteration space. The second pass lowers tiles to an intermediate representation
of imperative loops, called Recurrence Index Notation (RIN), and external function calls. The IR is
then lowered to C code.

Based on the recurrence equations and a schedule, REPTILE selects a tiling direction. For example,
in the jki loop order for the Cholesky equation presented in the example section, REPTILE tiles
along the columns direction. Then, in the first lowering pass, REPTILE recursively divides the
original iteration space to produce an ordered list of disjoint tiles, where the computation in each
tile is expressed using the same recurrence language as the input equations. Furthermore, each of
the tiles covers a unique area of the original iteration space such that the union of these disjoint
tiles is equal to the original iteration space.

The second lowering pass lowers the tiles to an imperative IR code (called RIN) that represents
loop nests and calls to external functions, and then to executable C code. This lowering stage
manages dependencies both between tiles and within tiles when placing the recurrence equations.
If it is not possible to generate a program that respects the loop order and recurrence dependencies
(inter-tile and intra-tile), then the compiler reports an error.

Users can also provide mappings that associate recurrence expressions with external library
functions, that can match on input recurrence subexpressions. Such mappings are provided by
registering an external function with an associated recurrence describing the function’s computation.
Users can either specify mappings to pre-defined external functions or provide their own functions.
These functions may also be REPTILE-generated functions, which can be treated as external
functions. Precisely, a REPTILE schedule reflects tiling at one level of the hierarchy; by having
a REPTILE function map a tile to another REPTILE function, users can compositionally express
multilevel tiling. The capability language used to describe each external function’s computation is
same as the recurrence language used to define the tiles and input recurrences. The user provides
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Original Equation:

Ai=/>254 <i

Tiles: <1<

1) A = Zj A g 8 0<j< (outer expression removeqd)
2 A = <J<

\/Zj 4;
3 A; = \/Zj Aj i <j<N (discarded)

Fig. 7. Intuition: the three tiles resulting from tiling a simple equation with the constraint j < i. Here, we tile
with respect to i, whose tiling bounds are iy and i; in each tile. The three resulting tiles have different bounds
for j. In the first tile, the square root is removed because the summation does not complete. The last tile is
discarded/filtered out as its bounds are inconsistent with the constraint j < i

tensor and variable matchings, in order to validate that the input recurrence expression and external
function’s registered capability expression are the same, apart from changes in variable and tensor
names. If the recurrence and external function are equivalent, the generated RIN will combine
tiled loops with calls to optimized external functions. This imperative, loop-based IR is then finally
translated into C. This stage uses standard techniques utilized by tensor algebra compilers like
Mosaic (for lowering calls to external calls) and like TACO [Kjolstad et al. 2017], COMET [Tian
et al. 2021], and MLIR SparseTensor [Bik et al. 2022] for lowering loops. These capabilities allow
REPTILE to leverage existing high-performance libraries when available, while still maintaining
the ability to compile recurrence equations for which no mappings exist to low-level code.

A sample input for generating a Cholesky decomposition in REPTILE is shown in Figure 6. The
user defines the Cholesky decomposition recurrences, a tile size of 1000, and a jik loop ordering
(which implies that we tile over j). An external TRSM function is registered, along with its capability
expressed as a recurrence. A mapping to this TRSM is provided as part of the schedule, which
directs the compiler to find the tile with the capability function associated with TRSM, verify the
mapping is valid, and then compute that tile with the external function.

5 Tiling
Tiling a system of recurrences involves dividing the computation into smaller pieces that can be
efficiently computed. This process requires five steps:

(1) Determining the tiling direction based on the given loop order and recurrence equations
(Section 5.1) (lines 1-2 in Algorithm 1).

(2) Creating initial tiles by dividing the program’s iteration space along the tiling direction
(Section 5.2) (lines 3-7 in Algorithm 1).

(3) Filtering tiles by intersecting them with the recurrence equations’ iteration space to determine
which tiles contain valid computations (Section 5.3) (lines 8-9 in Algorithm 1).

(4) Simplifying each filtered tile by updating the equations and bounds of the original recur-
rence(s) to reflect the intersection with the iteration space of the tile (Section 5.4) (lines 10-12
in Algorithm 1).

(5) Determining the order in which the filtered tiles will be lowered to our IR (Section 5.5) (lines
10-11 in Algorithm 1).

The following subsections explain each step. Here, we present a brief example in Figure 7 to show

the main intuition behind the tiling approach. In this example, we are tiling over the i direction.
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Algorithm 1 Tiling Algorithm

Input: RecurrenceProgram P, Schedule S
Output: OrderedTileList
: Determining Tiling Direction
: tilingVar « S.loopOrdering[0]
: Creating Tiles
: nonTilingVars « all_variables(P) \ {tilingVar} = {vary, vary, ...,varp}
: Let vp, v; be boundary variables for tilingVar
: R={{0,v}, {0, 01}, {v1,N}} > Three possible ranges for each non-tiling variable
: tiles « {Tile(tilingVar : {vy, v },vary : ri,vary : ry, .., vary : ry) | ri,ra, ... rn € R}
: Filter Tiles
: Vtile € tiles, tile.recurrences := {rec € P.recurrences | rec.iterSpace N tile.iterSpace # 0}
: Simplify Tiles
: Vtile € tiles, V rec € tile.recurrences, rec.updateEquation()
: Vtile € tiles, V rec € tile.recurrences, rec.updateConstraints()
: Ordering Tiles
: orderedTiles « sort tiles by bounds of P.nonReductionV ars then P.reductionVars
: return orderedTiles

O 0 N N U R W N =

e e el
TR W RO

This means that in each tile, i is bounded between i0 and i1. Meanwhile, the non-tiling variable j
may lie in any of the three ranges of i as shown in Figure 7, each corresponding to a tile. Notably, in
Tile 1, where j < i0, the original summation over j does not complete, due to the summation ending
prematurely at i0 instead of i, in which i0 < i. This leads to the simplification of the recurrence:
the outer expression surrounding the summation (square root) gets removed, giving us a different
mathematical operation for Tile 1 when compared to Tile 2, where the summation does complete.
This is because a square root operation does not distribute over a summation, so it can only be
run if the summation has completed. Meanwhile, Tile 3, where j > i1 is discarded (i.e. filtered out),
since it lies completely outside of the original bounds imposed upon the equation: j < i.

The idea of dividing the iteration space with respect to the bounds of tiling variable leads to
tiles which may be computationally different from one another. All of the evaluated linear solver
recurrences (LU, TRSM, TRSV, TRTRI, POTRF) exhibit similar properties; they include constraints
(e.g. j < i) over indexing variables, summations over these variables, and non-distributive outer
expressions over the summations. These outer expression get removed depending on the tile bounds,
meaning different tiles now compute different recurrences.

5.1 Determining Tiling Direction

REPTILE selects the the tiling direction based on the outermost loop variable in the user-specified
loop order (line 2 of Algorithm 1). This is done to ensure that any tiling first applies to the outer
most loop, as it is the loop that will benefit the most from tiling. Tiling at the outermost loop level
is particularly beneficial because it results in asymptotically smaller number of tiles (for example,
tiles just over columns, as opposed to both rows and columns). Since we aim to map each tile to an
external function, this results in less external function call overhead and thus better performance.

Consider the Cholesky decomposition recurrence equations from Figure 1 that has a user-
specified jki loop order. In this case, j is the outermost loop variable and indexes the columns of
the output tensor L on the recurrence’s left-hand side. This indicates the outer loop will iterate over
contiguous groups (i.e., blocks) of columns, resulting in a column-by-column computation pattern.
Therefore, REPTILE chooses to tile in the column direction by selecting j as the tiling variable,
creating vertical blocks of columns, where each column block will be computed sequentially after
the column block to the left.
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Fig. 8. On the left, we vary i (it can take on 3 different ranges as shown) with the tiling bounds of j. Here, the
tiling variable j is bounded between jO and j1. On the right we see how k varies (it can take on 3 different
ranges) with respect to a particular range for the bounds of i (when i is between jO and j1). In other words,
the figure is showing a 3D iteration space via two 2D iteration spaces for the running Cholesky example.

5.2 Creating Tiles

To create tiles, we first define the boundaries for the tiling variable (Algorithm 1 line 5). For any
tiling variable v, we define two boundary variables v0 and v1 that divide the iteration space into
tiles of size Ty = v1 — v0 along the tiling direction(s). The tile size, T, is specified by the user in the
schedule. For any v, the tiling boundaries v0 and v1 are calculated as v0 = ¢ - T; and 01 = (¢t + 1) - T.
Here t is the tile loop iteration variable ranging from 0 to %, with N being the size of the tensor.
These boundaries create tiles that collectively span the entire iteration space as ¢ increments.

We also handle non-tiling variables with respect to the boundaries of the tiling variable. Unlike a
tiling variable, a non-tiling variable is not confined to the tiling bounds within a particular iteration
of the outer tile loop ¢ and can exist outside of these bounds. It is useful to view a non-tiling
variable’s iteration space in terms of the tiling variable’s bounds. This is because the recurrences
calculated by tiles can vary depending on which interval the non-tiling variables lies. In particular,
each non-tiling variable can exist within one of three intervals relative to the tiling boundaries (the
set R defined in line 6 of Algorithm 1):

o Before the tiling bounds of v (0 to v0)
o Within the tiling bounds of v (00 to v1)
o After the tiling bounds of v (v1 to N)

For our running Cholesky example where j is the tiling variable, we introduce boundaries j0
and j1, calculated as jO = ¢ - Ty and j1 = (¢ + 1) - T;. The non-tiling variables i and k can each take
three possible ranges relative to these boundaries:

Possible ranges for i: Possible ranges for k:
e 0<i<jo 0« 0<k<jo
e jO<i<jl o jO<k<jl
e j1<i<N e j1<k<N

The bounds for i and k each are illustrated in Figure 8, in which i and k can independently take
one of these three ranges, while j is fixed within one range between j0 and j1. Figure 9 shows
how the combinations of these range assignments (line 7 in Algorithm 1) resultsin 3 X3 X1 =9
tiles within each vertical slice bounded by jO and j1. As t iterates from 0 to Tﬂs’ these nine tiles
collectively cover the entire iteration space of the program.
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Fig. 9. Nine tiles are considered in a column tiling of a three dimensional iteration space. When tiling in the
column direction, j is always in the interval between jO and j1, but i and k may each lie before j0, within the
JjO to j1 interval, or after j1. Since j is always between j0 and j1 it only has one possible interval. Given the 3
possibilities for i and k each, there are 3x3=9 program tiles total, shown above. In the Cholesky decomposition,
after the filtration step where recurrences are assigned to tiles, only the four tiles within the blue-dotted box
remain, and the other five tiles are not lowered to RIN.

5.3 Filter Tiles

The filtering pass shown in line 9 of Algorithm 1 discards some of these tiles, because the initial
tiles may not all contain valid computations, meaning the tiles’ boundaries may not be consistent
with the original recurrence’s constraints. We filter tiles by checking which ones intersect with the
iteration space of the input recurrence equations. In particular, if a tile spans a non-empty subset
of the iteration space of a recurrence, that recurrence gets assigned to that tile.

In case a tile isn’t assigned any equation, it gets discarded. For example, in our running Cholesky
decomposition example, tiles in the upper triangular region receive no equations because Cholesky
only computes the lower triangular part. Therefore, of the nine initial tiles, only four remain in this
filtering process for our Cholesky example. These four are enclosed inside the blue dotted box in
Figure 9, and these four tiles emerge from two distinct regions:

(1) Where j0 < i < j1 (diagonal region):

e One tile where k varies from 0 to j0, handling reads from previous tiles
e One tile where k varies from jO to j1, computing final output values

(2) Where j1 < i < n (below diagonal region):

e One tile where k varies from 0 to j0, handling reads from previous tiles
e One tile where k varies from jO to j1, computing final values

5.4 Simplify Tiles

The filtration process identifies tiles which contain valid computations. However, the creation of
these tiles also leads to the imposition of tiling bounds over the bounds of the original equation
(intersection of tiling bounds and bounds of the original equation). On top of this, we may also
have equation simplifications via removal of outer expressions such that our tiles may end up
being mathematically different from each other. We saw this in Figure 7 for the simple example of
a square root over a summation, and the same idea can be extended to other examples, as seen in
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line 11 and 12 of Algorithm 1. Figure 10 demonstrates how intersecting the Cholesky recurrences
with the provided tiling bounds results in a simplified recurrence without any outer expressions.
As stated, tile bounds can cut off summations in the recurrences, resulting in the removal of the
initial recurrences’ outer expressions within the tile. Figure 10 shows what the initial Cholesky
recurrences change into under tiling bounds, for one of the four tiles. In particular, the summation
does not complete since k is upper bounded by j0 inside this tile. Therefore, the outer expression
including the subtraction and division/square root is removed for both the input recurrences. The
resulting recurrence (with the updated equation and bounds) turns out to be an SYRK operation.

5.5 Ordering Tiles

The final step is to determine the order in which the filtered tiles will be lowered to our IR (line 11
in Algorithm 1). Since the tiling variable has fixed bounds within each tile, we order tiles based on
the bounds of the non-tiling variables. In doing so, we prioritize non-reduction variables (those
indexing the output tensor on the left-hand side of recurrence equations) before reduction variables
(those appearing only on the right-hand side). This two-level prioritization is implemented by the
sorting operation in line 11, which first sorts by non-reduction variables and then by reduction
variables. This prioritization ensures the output tensor is built systematically, as non-reduction
variables are the ones that index into the output tensor. Within each variable’s ordering, tiles are
arranged in ascending order based on their bounds. For our Cholesky example, Figures 11 and 12
show the ordering for the four tiles, and blocks of the output tensor that the four tiles write to
respectively. Here, the four tiles are ordered as follows:

Original Recurrence System Tile Bounds

Lij=|Aij— > LjLi | /Lj; :k<j<i i < i i
( 2 Lok k) j ﬂ o< i< jt

L= |A;—Y LixLa ck<j=i 0 < k < jo
k

Simplified Recurrence After Intersection
Lij+:ZLiijk 0<k<j<i<i<h
k

Fig. 10. The Cholesky recurrence system is intersected with the given tiling bounds. The result is a simplified
recurrence, which computes an SYRK, i.e. the part of the original recurrences corresponding to these bounds.
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Fig. 11. Since the tiling variable j has fixed bounds Fig. 12. Tiles of the iteration space writing to blocks of
within each tile, the order in which tiles will be low- the output tensor L for column-tiled Cholesky decom-
ered to our IR is determined based on the bounds of position. Each block has two associated tiles, whose
the non-tiling variables i and k. ordering is shown in Figure 11.
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(1) First by non-reduction variable i: tiles operating on the range jO < i < j1 come before those
operatingon j1 <i<n

(2) Then by reduction variable k: for tiles sharing the same i bounds, we order based on k’s
range (0 < k < jO before jO < k < j1)

6 Lowering Tiles to RIN

Tiles are lowered into an imperative IR called Recurrence Index Notation (RIN), whose grammar is
shown in Figure 13. In the lowering process, the ordered tiles are lowered one by one, such that the
code to compute each ordered tile is inserted into an initially empty RIN loop nest (lines 1-3 in
Algorithm 2 ). Tiles consist of recurrence expressions with their constraints, and these expressions
may be dependent on previously computed values. These previously computed values may either be
in previous tiles or within the current tile itself. Therefore, we must track what has been computed
at different points in the program to correctly place recurrence expressions at program points
where their dependencies are satisfied. To do so, REPTILE manages dependencies at two levels:
between tiles and within tiles, creating a hierarchical dependency management system (lines 2 and
5 in Algorithm 2).

REPTILE generalizes and adapts RECUMA’s approach for handling dependencies in recurrence
expressions during IR generation. RECUMA provides mechanisms for handling dependencies
between compute statements, and REPTILE extends this to handle dependencies between tiles.
RECUMA generates its IR by placing subexpressions from the user-provided recurrences into a
loop nest. Code generation completes when each subexpression has been placed into the loop,
at which point the loop represents the final IR for the program. RECUMA ensures a recurrence
expression is only placed at a program point where its dependencies are satisfied. In particular, the
expression is greedily placed in the first program point where all its dependencies are calculated.

REPTILE extends this idea hierarchically: code for a tile can only be placed into the IR once the
tiles it is dependent on are computed (lines 9-10 in Algorithm 2). Within each tile, code generation
is nearly identical to RECUMA'’s, and the placement of expressions into the loop nest for the specific
tile follows RECUMA’s dependency mechanism. Unlike RECUMA, in which each recurrence’s
expression appears in exactly one place in the final IR, the same recurrence expression for REPTILE
might appear in multiple tiles. This is because in REPTILE, a recurrence may be assigned to more
than one tile in the described filtration algorithm. Nevertheless, code generation of each REPTILE
tile maintains its own isolated dependency analysis, while respecting cross-tile dependencies.

The dependencies are managed through two complementary mechanisms:

1. Determining what must be computed at the start of any loop iteration — whether it’s the
outer loop over tiles or inner loops within a tile (lines 7-8 in Algorithm 2).

2. Tracking the state of computation as we progress through the program, both at the tile level
and within tiles (lines 2, 5, 13, and 16 in Algorithm 2).

The need for these two mechanisms arises from the nature of dependencies in recurrences:
expressions may depend on values computed in previous iterations of a loop (requiring the first
mechanism), and they may also depend on values computed within the same iteration (requiring
the second mechanism). This is true both at the tile level, where a tile may depend on previous tiles
or tiles in the same iteration, and within tiles, where expressions may have similar dependencies.

If the lowering process indicates that a particular tile can’t be placed because its dependencies
can’t be satisfied, it means that tiling isn’t possible for that recurrence and schedule, and REPTILE
will inform the user accordingly. For example, in a tiling of jki Cholesky (column tiling), the lower
block is dependent on the upper block in the output tensor. If a different recurrence had circular
dependencies between a lower and upper block, column-wise tiling would be impossible.
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Algorithm 2 REPTILE emits its IR tile by tile, and checks each tile’s dependencies are satisfied
before lowering the tile to RIN. The program maintains a complete state of what has been computed,
which is formed through two complementary mechanisms: (1) Loop Iteration Readiness determines
what must be computed at the start of any loop iteration at both tile level (line 7) and within tiles
(line 8); and (2) Computation State Tracking updates what has been computed after placing each
recurrence (line 13) and tile (line 16). Both mechanisms contribute to building the inter-tile state
(lines 2, 7, 16) and intra-tile state (lines 5, 8, 13) that together determine if a tile’s dependencies are
satisfied (lines 9-10). If satisfied, the tile’s RIN is appended to the program (line 15); otherwise, the
compiler reports that tiling isn’t possible (line 10).

Input: OrderedTileList orderedTiles
Output: RIN program

1: rinProgram < ""
2: interTileState «— {} > Tracks regions computed between tiles
3: for tile € orderedTiles do
4: tileRIN « "
5: intraTileState «— {} > Tracks regions computed within a tile
6: for recurrence € tile.recurrences do
7: interTileState.update(RegionComputedByPrevTileLooplters(recurrence))
8: intraTileState.update(RegionComputedByPrevLooplters(recurrence))
9: if recurrence.dependencies ¢ (interTileState U intraTileState) then
10: Error("Tiling not possible with given schedule: dependencies violated")
11: end if
12: tileRIN.addtoLoopNest(recurrence)
13: intraTileState.update(RegionComputedBy(recurrence))
14: end for

15: rinProgram.append(tileRIN)

16: interTileState.update(RegionComputedBy(tile))
17: end for

18: return rinProgram

IndexVar o For for == for(i<wo<i):stmt*
Tensor t Assign asn n= by =e |ty =€
Index i w= o|o-—int|int Statement  stmt == asn| for
TensorAccess ta u= RIN rin = stmtt
Func func == potrf([tt], [0%]) Expression e u= tale+e
| gemm([t*], [0*]) | ... le—e]...| func

Fig. 13. Grammar for Recurrence Index Notation. The IR grammar is the same as the RECUMA’s RIN, with
the only addition being the func production to support calls to external functions.

6.1 Loop Iteration Readiness

Since recurrence expressions may be dependent on values computed in previous iterations of a loop,
it is important to know what values are computed at the start of each loop iteration. This analysis
applies hierarchically — both to loops over tiles and loops within tiles (lines 7-8 in Algorithm 2).

To reason about this, we see how loop variables index into the output tensor’s dimensions. A
similar analysis was introduced by the RECUMA compiler [Sundram et al. 2024] under the term
"inductive assumptions” and we have extended it to reason about loops over tiles.

To illustrate this process, consider the lowering of the first tile for our Cholesky decomposition
example. As seen in Figure 14, the recurrence expression with left hand-side L;; is dependent on
Lix and L j; which are in previous tiles. Therefore, we are unable to place the expression without
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Fig. 14. For column-wise tiling of Cholesky decomposition, when computing the diagonal tile’s recurrence
Lij = (Aij — 2k LikLji) /Ljj + k < j < i, all columns up to jO (green) must be computed at the start of
iteration ¢ of the tile loop. The expression with left-hand side L;j in tile 1is dependent on Ly and L jx, which
lie in the computed region. This allows the placement of this expression inside tile 1 to calculate L;j.

for t in range(0, num_tiles)
computed L(:,: j0)

for j in range(j0, j1)
for k in range (0, j)
for i in range (j+1, j1)

for t in range(0, num_tiles)
for j in range(j0, j1)
for k in range (0, j)
for i in range (j+1, j1)

(b) We have determined that all columns up to jO
must be computed at the start of iteration ¢t of the
tile loop since the last iteration wrote to columns up
to jO.

(a) Tile 1is dependent on values in previous tiles and
can’t be placed without determining what must be
computed at the start of iteration t of the tile loop.

for t in range(0, num_tiles)

for t in range(0, num_tiles)
computed L(:,:j0)
tilel_code

computed L(:,:j0)
tile1_code
tile2_code

(c) Tile 1is placed since its dependencies are now sat-
isfied. The code for computing the tile is not shown
in the code above.

(d) Tile 2 is placed and the dependencies within the
tile are managed similar to how RECUMA would
reason about them for non-tiled code.

Fig. 15. Steps of the placement algorithm for generating RIN for tile 1 and 2 of a jki Cholesky decomposition.
Green text show readiness markers that are not part of IR but internal to the compiler.

determining what has been computed at the start of iteration ¢ of the tile loop. Since we are tiling
over columns, we can determine that all columns before j0 must be computed at the start of iteration
t (jO being the lower bound for the current iteration). This is visualized on the right side of Figure
14, where the green region shows values which are assumed to be computed at the beginning of
the iteration t of the tile loop (i.e., the outer most loop).

Similarly, within each tile, we need to track what’s computed at the start of inner loop iterations
(line 8 in Algorithm 2). This is because recurrence expressions may also be dependent on values
within a tile itself which would involve determining what has been computed at the start of inner
loops within a tile. For example, in a jki loop order within a tile, we might need to determine what
is computed at the start of iteration j of the outer loop within this tile.
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Fig. 16. Triangular block (yellow) marked as computed after placing tile 2 since no subsequent tile will write
to this region of the output tensor. The recurrence expression with left-hand side L;; in tile 4 is dependent on
Ljk, which lies in the computed region. This allows the placement of this expression inside tile 4.

N ‘ for t in range(0, num_tiles)
for t in range(0, num_tiles) computed L(:,:j0)
computed L(:,:j0) tilel code
tile1_code tile2_code
tile2_code o computed L(j0:j1, jO:j)
computed L(j0:j1, jO:j) tile3_code
tile4_code

(a) Yellow region of output tensor marked as com-
puted since no future tile will modify this region. This  (b) Tile 3 and and Tile 4 placed. The existing "com-
information is recorded internally inside the IR with puted" information along with dependency analysis
the "computed” statement after the code for tile 2. inside the tiles allow for the placement of these tiles.

Fig. 17. Steps of the placement algorithm for generating RIN for tile 3 and 4 of a jki Cholesky decomposition.
Green text show readiness markers that are not part of IR but internal to the compiler.

More formally, for any loop I, we can determine what’s computed at the start of its iteration by
examining the dimension [ indexes into. Let d’ be this dimension, x4 be a variable that indexes
into dimension d’, 10 be the loop’s lower bound for the current iteration, and N; be the the bound
of the tensor (or tile if a loop [ is an inner loop within an individual tile) in dimension i. For the
output tensor L we can specify:

e In dimension d’: all values are computed for 0 < x5 < 10
e In all other dimensions i # d’: values are computed for 0 < x; < N;

In the case of our Cholesky decomposition example, we have a 2-D output tensor L and we want
to determine what is computed at the start of iteration t of the tile loop. Since we are tiling over
columns, t indexes into the columns dimension so d’ is the column dimension. The lower bound
for the current iteration is jO so we can determine that L(:,: j0) is computed at the start of iteration
t of the tile loop which means all columns of L upto jO are computed at the start of iteration ¢ of
the tile loop. This reasoning applies to both the outer tile loop and to loops within tiles, allowing
REPTILE to handle dependencies at both levels. The steps of the placement algorithm for lowering
tile 1 and tile 2 of a jki Cholesky decomposition are shown in Figure 15.

6.2 Computation State Tracking

Recurrence expressions may depend on values computed within the current iteration of a loop,
therefore we need to track what gets computed as we progress through an iteration of both the
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Algorithm 3 Map Tiles to External Functions: The algorithm iterates through each tile in the RIN
program (line 1), checking if a mapping exists for the tile (line 2). When a mapping is found, it
verifies that both the expression and iteration space of the tile match those of the external function
(line 4). If verification passes, the algorithm replaces the tile with the external function call (line 5).

Input: RIN Program rinProgram, Mappings mappings
Output: RIN Program with external function calls
: for each tile € rinProgram.tiles do
if mappings(tile) # 0 then
function « mappings(tile).function
if function.expr = tile.expr and function.iterSpace = tile.iterSpace then
rinProgram.tile « function
end if
end if
: end for

R AN AN A v

: return rinProgram

tile loop and inner loops within the tile. The lowering process must thus track the state of the
computation at two levels: between tiles and within tiles. This hierarchical tracking is necessary
because dependencies exist both between tiles (where a tile may need values from previously
computed tiles) and within tiles (where expressions may depend on earlier results in the same tile).

For tile-level tracking, as tiles are placed into the loop, we identify regions of the output that
become fully computed, meaning no future tile will modify those regions (line 16 in Algorithm 2).
These regions are marked as "computed” when the last tile that writes to them has been placed.
This tracking is crucial because future tiles may depend on values in these computed regions.

For example, in our Cholesky decomposition, after placing tile 2, we mark the triangular region
between j0 and j1 as computed (as shown in yellow in Figure 16) since no subsequent tile will
write to this region. This tracking enables us to later place tile 4, whose recurrence expression L;;
depends on L ji from this computed region.

Within tiles, the tracking mechanism follows RECUMA’s approach, monitoring which parts of
expressions have been computed and can be used by subsequent computations in the same tile (line
13 in Algorithm 2). While we defer the details of within-tile tracking to RECUMA’s formalism, the
principle remains the same — tracking what’s computed to ensure dependencies are satisfied. The
lowering of Cholesky tiles 3 and 4 is shown in Figure 17, which demonstrates how computation
state tracking enables placement of tiles dependent on previously computed tiles inside the loop.

7 Mapping Tiles to External Functions

While tiling itself is a useful optimization, in REPTILE it also serves as an intermediate step that
enables the use of external library kernels to compute tiles with different subexpressions of the
input recurrence equations. The user is given the ability to map these subexpressions to external
functions as part of the scheduling language. As shown in Algorithm 3, REPTILE iterates through
each tile in the RIN program (line 1) and verifies that the user-provided mapping is valid (lines 2-4).
If so, the algorithm replaces that tile’s loop nest in the generated RIN with a call to the external
function (line 5). The need for a scheduling language is illustrated by the multiple ways a solver
can be decomposed into different subroutines. Figure 18 shows how the Cholesky decomposition
can be recursively decomposed and mapped to subroutines. Each of these subroutines (POTRF,
GEMM, TRSM, SYRK) is itself a recurrence that can be further decomposed. For example, TRSM
can be decomposed into a smaller TRSM and GEMM, resulting in a hierarchical tiling. The user
can choose whether to map the larger and shallower TRSM directly to an external library, or
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to map its decomposed components (the smaller TRSM and GEMM) to external functions. For
the latter case, the user can hierarchically tile the Cholesky by mapping the Cholesky’s TRSM
tile to a REPTILE-generated TRSM. In REPTILE, each schedule reflects tiling at one level of the
hierarchy. Therefore, by linking the Cholesky’s TRSM tile to a REPTILE-generated TRSM, the TRSM
will be further decomposed into a smaller TRSM and GEMM. This flexibility is useful when, for
example, the external library’s TRSM routine is less optimized than its GEMM routine. By further
decomposing the TRSM into the smaller TRSM and GEMM calls, and then mapping these two
deeper calls to an external library, the resulting program spends less time in the slower external
TRSM (vs the faster external GEMM) than if all four calls were mapped only at the first level of
recursion. However, these additional decompositions come at the cost of making more calls to
external functions, thus incurring additional overhead. In some cases, it is best not to map a tile
to any function at all, if the overhead alone would degrade performance. REPTILE’s scheduling
language allows users to easily evaluate and benchmark all these options.

7.1 Function Capabilities and Mosaic

REPTILE, as outlined in Algorithm 3, maps tiles to external library functions (based on user
specification). The mapping process is derived from the Mosaic tensor algebra compiler [Bansal et al.
2023]. In Mosaic, a user specifies what subexpressions from the input tensor algebra equation should
be mapped to external functions. Each external function is pre-registered into the compiler with
an associated tensor algebra equation, known as the function’s capability, which mathematically
describes the function’s computation in the same language as the compiler’s input language. During
compile time, Mosaic checks that the input equation’s specified subexpression and the function’s
capability equation have semantically equivalent ASTs. If so, Mosaic uses this function to calculate
the subexpression, instead of calculating it with its own generated loops and compute statements.

Similarly, in REPTILE, both the input recurrences and function capabilities are defined in the
same recurrence language. REPTILE currently includes eighteen external functions whose compute
capabilities are defined in terms of the recurrence language, and users can easily add more by
registering an external function with its associated function capability. Like Mosaic, REPTILE
verifies the user-provided mappings are valid before generating calls to the external function.
Unlike Mosaic, REPTILE handles non-rectangular iteration bounds, as iteration variables can be
constrained with inequalities (e.g., j<i), creating triangular iteration bounds. Therefore, REPTILE
also verifies that the iteration spaces of the mapped tile and function capability are equivalent. This
is done by considering the iteration space inequalities as part of the input equation, such that the
iteration space description becomes part of the equation’s AST. This allows the AST equivalence
check to also verify that the iteration spaces are equivalent.

7.2 Expression and Iteration Space Equivalence

An input recurrence and function capability may have equivalent ASTs but differently named
tensors and variables. Therefore, to map a tile to an external function, the user describes how to
map variable and tensor names from the function capability to the tile recurrence. This description
is composed of:

(1) A tensor mapping o; : tensor — tensor that defines the correspondence between tensors in
a tile’s recurrences and the function’s capability
(2) A variable mapping o, : iVar — iVar that matches index variables

Based on user-provided tensor and variable mappings, REPTILE verifies ASTs are equivalent to
ensure that the external function calculates the desired input expression. REPTILE accomplishes this
through simultaneous recursive traversal of both the tile’s and function capability’s ASTs, checking
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Fig. 18. Left: Recursive decomposition of Cholesky recurrences into subroutines/tiles. Each tile can be
further decomposed. We found GEMM/SYRK required no further decomposition for good performance, as
multiplication routines are generally implemented well. However, further decomposition of TRSM into a
TRSM and GEMM improves performance for large input sizes. We also show the subexpressions of the input
Cholesky recurrences that map to each external call. Right: Decomposition of other evaluated recurrences.

the ASTs are equivalent, and that any differences in argument names to the AST operations are
resolved by the tensor and variable maps. To illustrate, we observe how a user can map a tile from
the Cholesky recurrences to an external TRSM kernel.

The tile mappable to a TRSM contains the following recurrence and iteration space:

Ajj = Yk LixLix
Li; (1)
Jo<k<j<ji<i<N

REPTILE’s external function capability for this TRSM is defined as follows:

Lij =

Bri - Zk Minrj
M;; (2)
Ny <j<i< N, N <r<Nj

REPTILE verifies that the tile’s recurrence equation and the external function capability are the
same. Given the following user-provided tensor mappings ¢; and variable mappings ¢,, REPTILE
applies the maps to the external function expression and then confirms the mapped external

function expression is the same as the tile’s recurrence expression:

o {X>L M—>L B—>A}

op:{r—i, i—j, jok No— jo, Nt = ji, N2 = ji, N5 > N}

Xpi =

®)

Under both of these maps in Equation 3, Equation 2 turns into Equation 1, thus verifying they
represent a valid mapping. In user code, these maps are provided separately as list of arguments to
a registered TRSM function, shown in Figure 19 and also shown in Figure 6.

In the code listing in Figure 19, ‘lib’ represents the external function registry. We note that
external ‘trsm’ function is also registered with a function signature stored in ‘lib[trsm].func’, which
defines all arguments to the function, specifically the relevant tensors and variables (including
iteration bounds). The user-provided mapping from the tile to the function (defined in the last line in
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# Register TRSM as an external function:

# Define its capability as a recurrence:

1ib['trsm'].capability = Recurrence("X[r,i] = (B[r,i] - sigma(j,N@,i,M[i,j1*X[r,j1))/M[i,i]
: NO<=j<i<N1, N2<=r<N3")

# Define its function signature:

lib["trsm'].func = "trsm([B,M,X]1, [r,i,j, No,N1,N2,N3])"

# Using the registered signature, map B->A, M->L, X->L, and all variables and tile bounds
mapping = "trsm([A,L,L], [i,j,k, jO,j1,31,N]1)" #RIN function

Fig. 19. User-provided schedule for mapping a triangular solve to the Cholesky decomposition.

the above code block) is itself defined like a call to this function, using the aforementioned signature,
but with different arguments. In this way, the tensor and variable maps are constructed implicitly
by recording how actual arguments in the mapping bind to the formal arguments defined in the
registered function signature. Furthermore, this mapping exactly represents how the operation
appears in the generated RIN: simply as a function call with the provided arguments, as defined in
the RIN grammar in Figure 13.

8 C Code Generation

REPTILE is implemented in Python, and provides a user-friendly frontend for defining recurrence
equations, constraints, and schedules as demonstrated in Figure 6. It first processes these inputs
through the tiling, lowering, and mapping phases described in previous sections, ultimately gener-
ating the low-level Recurrence Index Notation (RIN) intermediate representation. This RIN is then
lowered to executable C code. The RIN to C code generation phase in REPTILE builds upon the
approaches used in the RECUMA compiler [Sundram et al. 2024]. This phase is a straightforward
translation of the loop structures, arithmetic operations, and dependencies captured in the RIN
into C code that can be directly compiled and executed. REPTILE also integrates external library
calls within the generated C code. When a tile has been mapped to an external function, the RIN
contains special nodes representing these function calls. During C code generation, these nodes are
converted into appropriate external function calls with the correct parameters, tensor arguments,
and memory layouts — each RIN function argument binds to a corresponding C function argu-
ment. Taking inspiration from Mosaic’s foreign function interface [Bansal et al. 2023], REPTILE
implements a framework that composes optimized MKL kernels with compiler-generated code.

9 Evaluation

We evaluate REPTILE kernels for five solvers and two genomics algorithms (Needleman-Wunsch
and Smith Waterman which are discussed in section 9.6). The five solvers include Cholesky (POTRF),
LU with no pivoting (GETRENP), triangular solve (TRSV), triangular solve for multiple right-hand
sides (TRSM), and lower triangular matrix inversion (TRTRI). Each of these exhibit data reuse
and benefit from tiling. All solver kernels are evaluated against Intel MKL [Wang et al. 2014], and
any external library calls made by REPTILE likewise call MKL kernels. For the two non-solver
recurrences from bioinformatics (Needleman-Wunsch and Smith-Waterman), we evaluate their
tiled and non-tiled performance against the Parasail library [Daily 2016]. REPTILE’s compilation
times for kernels reported in this paper are in Table 1.

All benchmarks were run on a 20-core Intel Xeon Silver CPU with a 50 MiB L3 cache, 5 MiB L2
cache, and 640 KiB L1 data cache. All REPTILE code was compiled with gcc 9.4 on Ubuntu. We
leave computing LU with pivoting as future work, as it requires swapping rows. We evaluate how
user-specified tiling direction, mapping choices, and tile sizes impact performance.
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Fig. 20. Performance of REPTILE vs MKL. The Cholesky evaluation features two versions of a REPTILE
Cholesky, one in which the four subroutines are each mapped to MKL calls, and one otherwise equivalent
one, but where the TRSM subroutine is itself a REPTILE TRSM call, in which it is recursively decomposed into
a TRSM and GEMM - the underlying GEMM and TRSM get mapped to an MKL call, illustrating a deeper
recursive decomposition of the Choleksy routine. For the triangular solve (distinct from TRSM), which gets
decomposed into a triangular solve and GEMM, it is better to map the GEMM subroutine to MKL and have
the triangular solve subroutine be implemented with loops, as opposed to fully mapping both.

9.1 Mapping to External Handwritten Kernels

We generate REPTILE kernels for Cholesky decomposition, LU decomposition with no partial
pivoting, and triangular solve with multiple right-hand sides (TRSM), and lower triangular matrix
inversion (TRTRI). All of these are commonly used routines when solving systems of linear equa-
tions, and all mapping decisions are shown in Figure 18. For these four, we generated REPTILE
kernels in which all computation is carried out by external functions. We evaluate these kernels for
various input sizes, and for each input size, we also vary the inner REPTILE tile size. For each input,
we choose the best performing tile size and show its speedup over the baseline MKL kernel in
Figure 20. In all cases (except for the two smallest LU input sizes and one small Cholesky input size),
we are able to find at least one tile size that makes the REPTILE kernel outperform the MKL LU
routine. Notably this is accomplished by calling other MKL kernels for each tile. For the Cholesky,
LU, and TRSM, we notice that as input sizes become extremely large, REPTILE’s speedup over
MKL approaches 1x. For Choleksy, the speedup peaks at n=5000, achieving 1.2x speedup over MKL.
We postulate this is because this is around the point when data starts exceeding the capacity of
the L2 cache, increasing cache misses. Meanwhile, Figure 21 shows that our TRTRI performance
consistently outpaces MKL, even past n=5000, attaining up to 1.6x speedup. MKL is closed source so
it is hard to pinpoint why, but TRTRI is a lesser used kernel, so it is likely just not as well optimized.

9.2 Mapping to other REPTILE kernels

We also generate a REPTILE kernel for the Cholesky decomposition, but where the TRSM external
call is made to the aforementioned REPTILE-generated TRSM routine. Figure 18 shows that the
Cholesky decomposition can be recursively decomposed into a smaller Cholesky, a TRSM, a SYRK,
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and a GEMM. In turn, the TRSM can be further decomposed into a smaller TRSM and a GEMM.
First, we generated a REPTILE kernel for TRSM that calls MKL’s TRSM and GEMM and then
we generated a REPTILE kernel for Cholesky that used this REPTILE TRSM kernel. For some
problem sizes, this resulted in better performance than the REPTILE kernel only mapped to MKL.
We postulate this is because MKL’s TRSM is not as well optimized as GEMM, in which case handing
off and transferring multiply-add computations from the TRSM routine into the GEMM routine
can improve performance depending on tile size, input size, and hardware characteristics.

All four of the subroutines can be decomposed, but decomposition of GEMM and SYRK (which
is a GEMM variant) is generally not necessary as they are the most important and commonly used
linear algebra subroutines, and are thus generally well tuned and well optimized.

9.3 Varying Tile Size

REPTILE lets users specify tile sizes (the length of each tile in the tiling direction), which is a critical
optimization parameter. Notably, MKL (and many other BLAS/LAPACK libraries) does not let users
choose tile sizes, as tile sizes are not an exposed part of the BLAS/LAPACK interface. For the TRTRI
solver, the left side of Figure 21 shows that for a fixed input size and choice of tiling direction, tile
size affects the performance, hitting peak performance at tilesize=512 for a column tiling, and at
tilesize=1024 for a row tiling. When tile sizes get too small (e.g., 128 or smaller) and the number of
tiles increases, performance expectedly degrades below MKL’s. This likely due to overheads from
having too many calls to external functions. Table 4 shows how cache miss rates and runtimes
vary when changing the tile sizes for an unmapped Cholesky decomposition with n=4096. Here,
tile sizes and cache miss rate form a U-shaped curve. Similarly, tile sizes and runtimes also make
a U-shaped curve. The correlation coefficient between the miss rate and runtime is 0.97 out of 1,
indicating a strong positive correlation; higher miss rates are associated with longer runtimes. The
correlation coefficient for a Cholesky decomposition that maps to MKL kernels is .72. The positive
but lower correlation makes sense; tile sizes still matter, but MKL has other optimization decisions
hardcoded internally, which users cannot control.

Table 1. REPTILE’s compilation times are small; analysis happens at the equational level, independent of
matrix dimensions.

o Chol jki .. tri. s LU jik TRTRI TRTRI Smith Needleman
Kernel | Chol jki unmapped LU kij Solve ji TRSM jki unmapped | Coljik | Rowijk | Waterman Wunsch
Time (s) 0.14 0.24 0.11 0.05 0.05 0.30 0.13 0.13 0.01 0.01

Table 2. The best tile size for each REPTILE Cholesky kernel, for each benchmarked input matrix size. In all
cases, the number of column tiles is between one and five.

Matrix Dimension Size 1000 2000 3000 4000 5000 10000 15000 20000 25000 45000
REPTILE CHOL Best Tile Size 1000 2000 1500 800 1000 2000 3000 4000 2500 15000
REPTILE CHOL w/ TRSM Best Tile Size | 1000 2000 1500 2000 2500 2000 3000 4000 12500 15000

Table 3. Unmapped REPTILE vs mapped REPTILE Table 4. Tile size vs cache miss rate and runtime
runtimes (s) for LU decomposition.

Tile Size Cache Miss Rate | Runtime (s)
32 9.77 2.352582
Matrix Size ji]ljlz:fr’frgdei);gd) REPTILE LU kij 128 8.051 2.210000
1000 1862 0397 256 5.815 2.123323
2000 4.09 0332 512 4.046 1.872756
3000 14.45 0838 1024 3.187 1.736880
4000 52.135 1221 2048( 7.816 2.087795
4096 (untiled) 13.70 2.490000
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Fig. 21. Triangular Matrix Inversion Speedup over MKL. (a) explores different tile sizes and tiling directions
for a 4096x4096 matrix; (b) shows speedups with different matrix sizes.

For the Cholesky decomposition, for each input matrix size tested, the best tile size for our two
Cholesky REPTILE kernels is shown in Table 2. For smaller inputs (n=1000 and n=2000), the best
tested tile size was just the input dimension size, where there is only one column tile. We postulate
this is because for these cases, the matrix is small enough to fit in the L3 cache and thus never gets
evicted. For any larger inputs, the best tile size is one which results in multiple column tiles.

9.4 Choosing Tiling Direction

The tiling direction has a large impact on performance. For the TRTRI kernel, the best tiling
direction depends on the input size. We generated REPTILE kernels for an i tiling and a j tiling,
and compare their performance in Figure 21. Here the i tiling (i.e., row tiling) is better for smaller
input sizes and larger tile sizes, whereas the j tiling is often better for larger inputs. For the largest
sizes, they achieve 1.4x (row) and 1.6x (col) speedup respectively. We note that in both versions of
the TRTRI kernel, they map to the same types of kernels: a TRTRI, a TRSM, and TRMM (triangular
matrix multiply. However, they map to them in different ways; in each version, the kernels execute
in different orders, and the TRSM and TRMM actually operate on different parts of the matrix.

Furthermore, some tiling directions may produce tiles that do not map to any commonly known
kernels. For a k direction tiling of the LU decomposition, (e.g., kij or kji schedule), the tiles can be
mapped to a LU, a GEMM, and two TRSM calls. For a i or j direction tiling, however, most of the
tiles do not map (besides the small LU tile) to BLAS or LAPACK calls, so REPTILE will instead use
its own generated loops to compute those tiles. Table 3 compares the performance of a jik schedule
(j tiling, or column tiling) for LU, in which none of the tiles are mapped, and the performance of a
kij schedule (where all tiles are mapped). The vast performance distance highlights the importance
of choosing a good tiling direction to enable mappings.

9.5 Composing External Calls with Generated Loops

We generate a REPTILE kernel for the triangular solve, whoserecurrence is X; = (B;—2; L;i;X;) /Li; :
J < i, where B and L are inputs. The kernel is evaluated against the MKL triangular solve, and
speedup results are shown in Figure 20. The triangular solve can be recursively decomposed into a
smaller triangular solve and a matrix-vector multiply. We evaluated two REPTILE kernels: one in
which both the smaller triangular solve and matrix-vector multiply are mapped to an MKL call, and
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Fig. 22. REPTILE speedup: Smith-Waterman Fig. 23. REPTILE speedup: Needleman-Wunsch

one in which only the matrix-vector multiply is mapped. We find that the latter version, in which
only the matrix-vector multiply is mapped, results in significantly better performance than both the
MKL baseline and fully mapped REPTILE kernel. The highest speedup is 1.4x over the MKL baseline,
potentially due to MKL’s triangular solve kernel creating overhead and not being fully optimized.
This highlights the importance of composing mapped kernels with raw compiler-generated loops.

9.6 Generating Tiled Loops without External Mapping

We generate a REPTILE kernel for the Needleman-Wunsch and Smith Waterman algorithms, two
commonly used algorithms for aligning two strings of genomic sequences.
The associated recurrence for Needleman-Wunsch is

Sij = Max(S,-,j_l +C1, Si—l,j + C2, Si—l,j—l +C3 % (A, * B,))
The associated recurrence for Smith-Waterman is
Sij =Max(0,8; -1+ C1, Si—1,; +C2,Si_1j-1+C3 (A; # Bj))

These problems are not compute bound, not linear solvers, and don’t exhibit the same degree of
data reuse. They still contain some data reuse, specifically the broadcasting of A; and B, and can
still benefit from tiling. Figure 22 and Figure 23 shows that our tiled REPTILE kernels (generated
without external mappings) perform better than non-tiled kernels for both recurrences. We compare
REPTILE’s untiled and tiled kernels to Parasail, an optimized library [Daily 2016]. For Smith-
Waterman, both REPTILE’s tiled and untiled kernels outperform Parasail, whereas for Needleman-
Wunsch, tiled kernels outperform Parasail, while untiled kernels are slower.

10 Related Work

The RECUMA compiler [Sundram et al. 2024] demonstrated a novel code generation algorithm for
compiling recurrences to native code by managing dependencies within the equations. REPTILE
is implemented in Python as a separate compiler from RECUMA, but that uses principles from
RECUMA. REPTILE extends the work on recurrences by providing tiling capabilities and library
mappings, while preserving the generality of a compiler. The recurrence input languages for both
are the same, whereas REPTILE’s scheduling language is different to allow for tiling and mapping.

Prior to RECUMA, Dyna [Eisner et al. 2004] used runtime analysis to track dependencies.
While these systems offer general solutions for recurrences, they don’t achieve the performance
of specialized libraries. The polyhedral model [Feautrier 1991; Lamport 1974] is a well-known
framework for optimizing and tiling dense loops, and it was originally applied to finite difference
method recurrences [Karp et al. 1967]. TACO [Kjolstad et al. 2017; Kjolstad 2020] showed how tensor
algebra expressions could be compiled to efficient code for different sparse tensor formats [Chou
et al. 2018], with a scheduling language to control optimization [Kjolstad et al. 2019; Senanayake
et al. 2020]. Following that, the Mosaic [Bansal et al. 2023] compiler made an extension to it by
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enabling mapping to external libraries. Methods for tiling loops, including ones implementing
matrix decompositions have been studied by Yi and Kennedy [2002] and Carr and Kennedy [1994].

Libraries like BLAS [Dongarra et al. 1990; Lawson et al. 1979], LAPACK [Anderson et al. 1999],
and ATLAS [Whaley et al. 2001] provide highly optimized implementations but only for a fixed
set of operations. Certain LAPACK routines in various libraries use a recursive strategy, like the
Cholesky routine in OpenBLAS [ope 2024]. However, these libraries do not let users adjust tiling
sizes or directions. ScaLAPACK is a distributed memory version of LAPACK [Choi et al. 1992].
LINPACK preceded LAPACK and contained several solver implementations [Dongarra et al. 1979].
LINPACK is still used to benchmark supercomputers with a large LU decomposition[Dongarra
et al. 2003]. COnfLUX and COnfCHOX are LU and Cholesky decomposition algorithms designed
to minimize communication on supercomputers [Kwasniewski et al. 2021]. Similarly, minimizing
communication in TRSM was studied by Wicky et al. [2017]. ParSEC is a task-based framework for
distributed memory parallelism that has been used to run a Cholesky decomposition by launching a
task for each of the four subroutines [Bosilca et al. 2013; Cao et al. 2024]. Different loop orderings of
the Cholesky and LU decompositions were described by Ortega [1988a,b] and Menon et al. [2003].
The supernodal sparse Cholesky algorithm uses BLAS to factorize select sparse columns with similar
sparsity patterns. Sympiler [Cheshmi et al. 2017, 2020] is an inspector-executor framework targeting
supernodal Cholesky, triangular solve, and KKT systems. It applies low-level optimizations based
on a given sparsity pattern. The Exo framework [Ikarashi et al. 2022] allows users to call external
instructions, but it targets low-level instructions and doesn’t replace whole sub-computations like
REPTILE or Mosaic. The FLAME project [Bientinesi et al. 2005; Gunnels et al. 2001] introduced
a formal methodology for deriving provably correct blocked linear algebra algorithms. While it
emphasizes algorithm derivation, FLAME is not a compiler infrastructure. The BLIS [Van Zee et al.
2016; Van Zee and Van De Geijn 2015] library contains implementations of BLAS calls, underlying
microkernels, and functionality for composing these subroutines as building blocks for other
routines. PLASMA [Agullo et al. 2009; Bosilca et al. 2011] implements BLAS, LAPACK, and other
linear algebra algorithms using optimized subroutines, but does not automatically tile. Similarly,
ReLAPACK [Peise and Bientinesi 2016] provides recursive implementations of LAPACK algorithms,
but these frameworks lack the generality to handle arbitrary recurrence equations.

11 Conclusion

This works presents REPTILE, a compiler that deploys a novel tiling strategy to tile user-provided
recurrence equations and generates efficient code by composing compiler-generated loops with
calls to external libraries. Our evaluation demonstrates that REPTILE can match or exceed the
performance of hand-optimized libraries while maintaining the flexibility of a general recurrence
compiler. Therefore, it helps us bridge the gap between general recurrence equation compilers,
which offer flexibility but often lack performance, and optimized libraries, which provide high
performance but only for specific problems. More broadly, this work lays the foundation for creating
a compiler for recurrences that enables performance portability across different architectures and
can hence target single node, heterogeneous, and distributed memory machines alike.

Data Availability Statement

The artifact for this paper includes the REPTILE compiler [Tariq et al. 2025]. The frontend is
embedded in Python, and the compiler itself is a Python repository that compiles input recurrence
equations and generates C code with externals calls to MKL. The artifact also includes scripts to
reproduce the benchmarks in this paper, including the corresponding C kernels and the frontend
code to generate them. Instructions for using the artifact are available via an archived version of
the artifact on Zenodo. Benchmarking results may vary based on the hardware used.
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