Check for
updates

R DIGITAL Assaciaionfoe
acvyel® 155 Ry T @m open)
{5 Latest updates: https://dl.acm.org/doi/10.1145/3696443.3708918

RESEARCH-ARTICLE
Stardust: Compiling Sparse Tensor Algebra to a Reconfigurable
Dataflow Architecture

OLIVIA HSU, Stanford University, Stanford, CA, United States

ALEXANDER RUCKER, Stanford University, Stanford, CA, United States
TIAN ZHAO, Stanford University, Stanford, CA, United States

VARUN DESAL, Stanford University, Stanford, CA, United States

KUNLE OLUKOTUN, Stanford University, Stanford, CA, United States
FREDRIK BERG KJOLSTAD, Stanford University, Stanford, CA, United States

Open Access Support provided by:
Stanford University

I PDF Download
j;b 3696443.3708918.pdf
< 08 February 2026
Total Citations: 0
Total Downloads: 992

Published: 01 March 2025
Citation in BibTeX format

CGO '25: 23rd ACM/IEEE International
Symposium on Code Generation and
Optimization

March 1 -5, 2025

NV, Las Vegas, USA

Conference Sponsors:
SIGPLAN
SIGMICRO

CGO '25: Proceedings of the 23rd ACM/IEEE International Symposium on Code Generation and Optimization (March 2025)

https://doi.org/10.1145/3696443.3708918
ISBN: 9798400712753

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3696443.3708918
https://dl.acm.org/doi/10.1145/3696443.3708918
https://dl.acm.org/doi/10.1145/contrib-99659897558
https://dl.acm.org/doi/10.1145/institution-60012708
https://dl.acm.org/doi/10.1145/contrib-99658969303
https://dl.acm.org/doi/10.1145/institution-60012708
https://dl.acm.org/doi/10.1145/contrib-99659179908
https://dl.acm.org/doi/10.1145/institution-60012708
https://dl.acm.org/doi/10.1145/contrib-99661523479
https://dl.acm.org/doi/10.1145/institution-60012708
https://dl.acm.org/doi/10.1145/contrib-81474681074
https://dl.acm.org/doi/10.1145/institution-60012708
https://dl.acm.org/doi/10.1145/contrib-81484655173
https://dl.acm.org/doi/10.1145/institution-60012708
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60012708
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3696443.3708918&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/cgo
https://dl.acm.org/conference/cgo
https://dl.acm.org/conference/cgo
https://dl.acm.org/sig/sigplan
https://dl.acm.org/sig/sigmicro
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696443.3708918&domain=pdf&date_stamp=2025-03-01

Stardust: Compiling Sparse Tensor Algebra to a
Reconfigurable Dataflow Architecture

Olivia Hsu
Stanford University
Stanford, USA
owhsu@stanford.edu

Varun Desai
Stanford University
Stanford, USA
vdesai@stanford.edu

Abstract

We introduce Stardust, a compiler from sparse tensor algebra
languages to a sparse reconfigurable dataflow architecture
via a parallel-patterns programming model. Stardust lets
performance engineers specify the placement of data into
memories separately from the placement of computation
onto compute units. Users first schedule data placement
onto an abstract memory model, and then Stardust binds that
data to complex, on-chip physical memories. With guidance
from user schedules, Stardust binds computation using these
on-chip data structures to the appropriate parallel patterns.
Through cycle-accurate simulation, we show that Stardust
generates nine more tensor algebra kernels than the original
Capstan sparse RDA work. The generated kernels perform,
on average, 138X better than generated CPU kernels and 41X
better than generated GPU kernels.

CCS Concepts: - Computer systems organization —
Data flow architectures; - Software and its engineering
— Domain specific languages; Compilers.

Keywords: sparse tensor algebra, DSLs, compilers, dataflow,
reconfigurable architectures, parallel patterns

ACM Reference Format:

Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle
Olukotun, and Fredrik Kjolstad. 2025. Stardust: Compiling Sparse
Tensor Algebra to a Reconfigurable Dataflow Architecture. In Pro-
ceedings of the 23rd ACM/IEEE International Symposium on Code
Generation and Optimization (CGO ’25), March 01-05, 2025, Las Ve-
gas, NV, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3696443.3708918

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1275-3/25/03
https://doi.org/10.1145/3696443.3708918

Alexander Rucker
Stanford University
Stanford, USA
acrucker@stanford.edu

Kunle Olukotun
Stanford University
Stanford, USA
kunle@stanford.edu

628

Tian Zhao
Stanford University
Stanford, USA
tianzhao@stanford.edu

Fredrik Kjolstad
Stanford University
Stanford, USA
kjolstad@stanford.edu

1 Introduction

Reconfigurable dataflow architectures (RDAs) with sparse
operation support [7, 12, 26] is a promising approach for
accelerating sparse tensor algebra. To enable widespread use,
these RDAs should be accessible to performance engineers
who do not understand the specifics of the underlying ar-
chitecture. However, state-of-the-art RDAs are difficult to
program; typically, only users who have low-level knowl-
edge of the architecture (e.g., the designers themselves) can
effectively program them. Currently, programmers use hard-
ware configuration files [12] or languages [7, 20, 26] with
low-level architectural information embedded in the pro-
gramming model to program RDAs.

To make RDAs easier to program, we must raise the pro-
gramming abstraction above that of a specific RDA design. A
higher-level programming abstraction enables performance
engineers, who are not RDA experts, to write sparse tensor
algebra kernels that leverage these RDAs. If performance
engineers can readily develop sparse libraries with RDA
acceleration, then end-users will get better application per-
formance. Such programming abstractions can be realized
through advances in compilation techniques.

Tensor index notation (or Einsum notation) is a natural rep-
resentation of sparse tensor algebra computation. It is a math-
ematical notation and computing language that uses tensor
indices to express tensor operations. Programming sparse
RDAs using this notation means users only have to describe
the mathematical expression, along with sparse tensor data
structures. Performance engineers can then map the compu-
tation to an RDA using conventional performance engineer-
ing knowledge by deciding which computations should be
executed on the accelerator, data movement, and tiling for
locality. In order to enable this programming methodology,
we propose a compilation stack that compiles tensor index
notation along with a schedule and tensor data structure
descriptions to an RDA.

Prior work has made important strides toward this goal,
but an end-to-end compilation stack does not yet exist. Two
major approaches partially address compiling to sparse RDAs.

https://orcid.org/0000-0002-4195-8106
https://orcid.org/0000-0002-1928-0845
https://orcid.org/0000-0001-6702-2114
https://orcid.org/0009-0003-9936-2422
https://orcid.org/0000-0002-8779-0636
https://orcid.org/0000-0002-2267-903X
https://doi.org/10.1145/3696443.3708918
https://doi.org/10.1145/3696443.3708918
https://doi.org/10.1145/3696443.3708918
https://creativecommons.org/licenses/by/4.0/

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

The Custard compiler in SAM [14] provides a compilation

framework from tensor index notation to a streaming dataflow

intermediate representation (IR). However, SAM is only an
abstraction and does not automatically lower to any con-
crete sparse RDA. The Spatial language is a domain-specific
language (DSL) based on parallel patterns (such as map and
reduce) with compilers [20, 41] that target the Capstan [26].
Spatial, however, still requires programmers to write com-
plex code, which includes detailed architectural knowledge
of Capstan and its intricate memory model. Thus, neither
approach is complete in compiling from raising the program-
ming abstraction of sparse RDAs. We build on the existing
system infrastructure of Capstan and provide the missing
step from high-level tensor index notation to Spatial code
running on the RDA and its host.

There are several challenges when compiling to RDAs:
managing different types of RDA memories, mapping com-
putation to different accelerator units (which are parallel
patterns in the case of Spatial), and controlling combinations
of sparse coordinate-value streams between those units. Im-
perative languages like C present the programmer with a
convenient pull memory model—when you need data, you
ask for it—as CPUs and GPUs separate control logic from
memories. In RDAs, however, programmers must explicitly
manage data movement through the memory hierarchy, as
the control logic is attached to memories in a push memory
model [4, 22, 24-26]. These challenges with RDAs are in-
evitable and arise as complexity in the Spatial programming
model. Spatial, specifically, has parallel patterns which may
look like imperative loops, but their programming abstrac-
tion is different. The patterns represent scanners, producing
variables in a fixed manner over time, rather than tempo-
rally modifying variables in place as in imperative code. This
way of representing scanners (and their parallelism in space)
severely limits what Spatial code is valid, and these program-
ming and compilation challenges are further exacerbated by
the inherent complexity in sparse kernels [19].

Therefore, we introduce Stardust, a compiler from tensor
index notation to an RDA (Capstan) through Spatial lan-
guage. Stardust users first control and schedule the data and
computation placement on a high-level abstract RDA, allow-
ing the compiler to infer lower-level architecture-specific
details. The compiler automatically handles fine-grained
data structure binding to different types of memories along
with explicit decoupled memory movement between those
memories. The compiler also manages transformations from
abstract loops to scanner functions in the parallel-pattern
output language. Our contributions are:

e a data representation language that can express accel-
erator tensor placement abstractly.

e an algorithm that binds data structures in abstract
memory to different physical memories on the RDA.

629

Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Olukotun, and Fredrik Kjolstad

e a scheduling language that can express how portions
of a (potentially transformed) sparse tensor algebra
expression should be mapped to a sparse accelerator.

e a lowering rewrite system that maps sparse tensor
algebra expressions to a parallel-pattern language.

We use Stardust to compile a previously used benchmark
set [17] to the Capstan RDA [26]. Stardust produces code that
performs on average 0.65X that of the only hand-optimized
kernel from the benchmark (SpMV) written for Capstan by
its authors [26]. We demonstrate the generality of Stardust by
generating nine new sparse algorithms in addition to SpMV.
These ten Capstan algorithms outperform CPUs by 138X
on average (geo-mean) and GPUs by 41X on average. The
speedups are of the same order of magnitude as in the orig-
inal Capstan work, which stem from its massively parallel
and pipelined design. These experiments show that Stardust
makes it feasible to rapidly develop sparse RDA kernels.

2 Background

Our work builds on two lines of prior work: sparse tensor
algebra compilation techniques for CPUs [6, 17, 27] and the
extended Spatial DSL [20] that targets the Capstan RDA [26].

2.1 Sparse Tensor Algebra Compilation

The TACO compiler separates the algorithm (tensor index
notation) from the tensor compression formats and computa-
tion transformations through the use of format [6] and sched-
uling [27] languages, respectively. It compiles sparse tensor
algebra to imperative code by decomposing sparse iteration
spaces into hierarchical set expressions of per-dimension
data structures. Sparse algorithms are expressed in CIN (see
Figure 1), which encodes iteration, computation, transfor-
mations, and temporary tensors [16]. Finally, TACO lowers
CIN to generate efficient fused code that traverses irregular
data structures by skipping unnecessary computation.

Scheduling. The sparse scheduling language proposed
by Senanayake et al. [27] provides a sparse iteration trans-
formation framework. The framework modifies the sparse
iteration space of an expression by taking its CIN statement
and transforming it into a new CIN statement that represents
a different algorithm for the same expression. The schedul-
ing transformation framework describes optimizations to
change the computation order, insert temporary tensors for
partial sub-computation, exploit parallelism, and more. See
Table 1 for a reference to one TACO scheduling command.

Format Language. The format language proposed by
Chou et al. [6] decomposes a sparse tensor into per-dimension
(or level) formats that each describes how to store the co-
ordinates of one dimension of a tensor. As an example, the
canonical compressed sparse row (CSR) compression format
(see Figure 8 for an example matrix) can be represented by an
uncompressed (dense) dimension followed by a compressed

Stardust: Compiling Sparse Tensor Algebra to a Reconfigurable Dataflow Architecture

Index Variable i Index Variable List i+ Constants c¢ Tensors T

Accesses a = i
Expressions e == alcl|le+elexel...
Assignment A = a=el|la+=e
Statements S = Vi S | A |

S; S| SwhereS|Ss.tr=

Scheduling Relation r == split(i,io, iz, ¢) | fuse(io, iz, if) | ...

Figure 1. Concrete index notation (CIN) syntax.

" From Network

Pattern Memory - - . i L . .
Unit (PMU) C1[)

Pattern Compute -~ i

Unit (PCU) -’Y
Shuffle Network - ~ . .

" To Network

Memory Controller (MC)

Figure 2. A high-level overview of the Capstan architecture,
showing the opportunities for high-level parallelism across
PCUs and vectorized parallelism within a PCU.

(sparse) dimension. After the tensors have been described
using level formats and scheduling transformations have
been applied to the CIN, TACO generates code that iterates
over the level formats of the expression.

2.2 Capstan and Spatial

RDAs improve performance and efficiency by removing over-
head found in CPUs and GPUs. RDAs map programs in space,
meaning multiple data elements are processed in the same
clock cycle by pipelined and parallel compute units.

Capstan [26], shown in Figure 2, derives from Plasticine [25]
with support for sparse operations. A notable Capstan con-
tribution is its ability to iterate over sparse tensors using
scanners and bitvectors, which is enabled by its microarchi-
tecture and apparent in its programming model. In order to
program Capstan, sparse iterations must be split into pattern
headers and pattern bodies, where headers determine which
(un)compressed iterations to run, and bodies use header iter-
ation information to load, compute, and store data.

Users program Capstan with Spatial [20]'. Compilers that
handle low-level optimizations and insert memory-consistency
logic [20, 41] automatically lower Spatial to a streaming on-
chip dataflow graph and a cycle-accurate simulator.

Spatial uses a map-reduce abstraction. Each Foreach or
Reduce pattern is counter-indexed with an explicit paral-
lelization factor; multiple levels of nested loops can be in-
dependently parallelized to exploit different program-level
parallelism opportunities. Typically, the innermost loop is
vectorized, and the outermost loop is replicated across pat-
tern compute units (PCUs). Capstan provides sparse iterator

1A full description of Spatial can be found at spatial-lang.org.

630

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

patterns—including union and intersection combinations—in
addition to dense ones. Sparse patterns iterate by running
on non-zero bit-vector elements using the index of the non-
zero element instead of a counter. These sparse patterns are
shown in Figure 9 and described later in Section 7.

Spatial has an explicit, decoupled, programmer-managed
memory hierarchy. In a CPU, memory is managed using
caches and demand misses; however, Spatial requires manu-
ally partitioning data into chunks that fit on-chip and control-
ling the corresponding data movement. Specifically, there are
four programmer-controlled memory types, ranging from far
to near: DRAM, SRAM, FIFOs, and registers, with the middle
two mapping to Capstan’s pattern memory units (PMUs).

3 Motivating Example

To illustrate the fundamental difference between compil-
ing sparse expressions to imperative C-like code versus a
parallel-patterns programming model, we introduce a com-
mon sparse linear algebra kernel in machine learning [9],
sampled dense-dense matrix multiplication (SDDMM), as a
running example. SDDMM produces a result by performing
a dense matrix multiplication sampled by a sparse mask. The
tensor index notation for SDDMM is A;; = 33 B;jCir Dy
where A and B are compressed sparse row (CSR) matrices.
However, index notation is declarative and does not specify
any low-level control flow. We can expand the index notation
expression with three loops to describe control flow (over a
scalar expression): V;V Vg (A,-j += Bl-jCl-kaj) .

This notation is called concrete index notation (CIN) [16],
and we provide its syntax in Figure 1. Many compiler de-
cisions in prior work presuppose an imperative target lan-
guage. Figure 3 shows the C-like code generated from the
CIN statement by one suchcompiler [19]. The following
code locations in Figure 3 describe how prior work com-
piles this example to imperative code and shows why it is
more straightforward than compiling to parallel patterns: @
the ¥ nodes are exactly converted into for-loops (highlighted
in red), ® tensor elements are loaded/stored one element
at a time through indirect accesses that syntactically match
the index expression, ® tensor computation occurs only in
the innermost loop, and @ tensor accumulations may be
implemented as temporally-repeated variable modifications.

To target the parallel-patterns programming model of Spa-
tial, on the other hand, a compiler cannot depend on the
assumptions of an imperative programming model. For ex-
ample, the compiler to imperative code can load elements
where tensor accesses syntactically appear in the index ex-
pression, whereas most of the generated Spatial code in Fig-
ure 4 manages data movement. Specifically, Stardust must
address the following issues when compiling to Spatial code
as shown in Figure 4: @ the V nodes are converted to dif-
ferent parallel patterns, which may include sparse patterns

spatial-lang.org

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

that scan through data without temporal counters, ® ten-
sor elements are transferred in chunks parallelized across
pipelines, @ tensor data must be retrieved whenever the
data arrives not just in the innermost loop (at line 32), and ®
tensor computation (like accumulations) cannot temporally
modify variables so they are mapped to patterns (in this case
the Reduce pattern) that represent computation in space.
The lines highlighted in blue in Figure 4 show the code
complexity required to manage memories and data move-
ment in the Spatial programming model. The complexity
stems from the explicit, decoupled push data movement of
RDA accelerators. This memory management has two parts:

1. Explicit mapping of tensor arrays to different memory
types, such as FIFO, appearing on the right-hand-side
of the immutable variable val declarations.

2. Bulk data transfers between these memory types, demon-
strated by the many load and store keywords.

The Spatial programming model represents an accelerator
memory hierarchy, where the different memory types have
different capacities, locality, access constraints, and prop-
erties. We do not expect a performance engineer who is
familiar with CPU code to write such memory management
code for three reasons: it is abstracted away on CPUs, it
requires intimate knowledge of the accelerator memory hi-
erarchy design and memory types, and it is tedious since
the memory management takes up a majority of the Spatial
program. Therefore, Stardust automatically generates this
memory management code for usability and productivity,
raising the programming abstraction of RDAs.

4 Overview

We implement Stardust as a new compilation path inside
the open-source TACO system [17] as shown in Figure 5,
where blue indicates our contributions. Like TACO, Stardust
takes as input tensor index notation, a format language [6],
and a scheduling language [27]. Stardust extends the format
language to describe whether tensor data is placed on the
accelerator and the scheduling language to describe how
(sub-)computation maps to compute units on the accelerator.
Stardust generates Spatial code [20], which is then compiled
using prior work [20, 41] to a cycle-accurate simulations of
the Capstan sparse RDA [26].

Tensor index notation lowers to concrete index notation
(CIN) [16], a loop-based IR where compressed tensor data
structures are abstracted away (shown in Figure 1). Sched-
uling language commands are applied as rewrites on CIN.

1 ©for (i = @; i < Cl_dim; i++)

2 for (jB = B2_pos[i]; jB < B2_pos[i+1]; jB++) {

3 j = B2_crd[jB];®

4 for (k = @; k < DI_dim; k++)
5 ©A[jB] @+= B[jBI*C[i,k]*DCk,jl; }

Figure 3. C implementation of SDDMM with CSR matrices,
generated by the TACO compiler.

631

Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Olukotun, and Fredrik Kjolstad

Table 1 has one example of the original scheduling com-
mands in TACO, which we extend to target parallel patterns
in Section 7. A scheduling command may additionally add
metadata that is used during CIN lowering. Relation nodes
store this metadata by tracking the relationships between
CIN nodes, which are used to insert remapping code.
Stardust solves two key problems in compiling to sparse
accelerators: mapping tensors to memories and mapping
computation to the accelerator. Once mappings are decided,
by the user or compiler, Stardust generates Spatial code.
Users only need to provide coarse-grained tensor place-
ment information; Stardust automatically synthesizes the
rest of the data placement during code generation. Users
decide whether a tensor lives on or off the accelerator, with
a new memory location construct in the format language
(Section 5). During code generation, Stardust completes fine-
grained data placement via a memory analysis algorithm.
The memory analysis algorithm first determines the exact
placement of tensor data for every level of the memory dur-
ing compilation (Section 6). Stardust then generates the re-
quired data transfer code between memory types.
// Spatial header code ...

// Initialize all DRAM arrays as <name>_d
val A2_pos_d = DRAMLTI(nnz_max)
Accel {
val B2_pos = SRAM[T](nnz_accel_max)
B2_pos load B2_pos_d(@::(B1_dim + 1) par ip)
OForeach (C1_dim by 1 par bp) { i =>
9 val A_vals = FIFOLTI(16)
10 val A2_crd = FIFOLTI(16)
11 val A2_pos = SRAM[TI(nnz_accel_max)
12 val jB_start = B2_pos(i)
13 val jB_end = B2_pos((i + 1))
14 val jB_len = jB_end - jB_start
15 val B2_crd = FIFOLTI(16)
16 B2_crd load B2_crd_d(jB_start::jB_end par 1)@
17 val B_vals = FIFO[T](16)
18 B_vals load B_vals_d(jB_start::jB_end par 1)

0 N Ul WD

19 Foreach (jB_len by 1 par 1) { jB =>

20 val j = B2_crd.deq

21 val B_hoisted = B_vals.deq®

22

23 val D_vals = SRAMLTI((nnz_accel_max / 4))

24 D_vals load D_vals_d(j*D1_dim::(j+1)*D1_dim par ip)
25 val C_vals = SRAMLTI((nnz_accel_max / 4))

26 C_vals load C_vals_d(i*C2_dim::(i+1)*C2_dim par ip)
27

28 val tjA_vals = Reg[T]1(@.to[T1)

29 OReduce(tjA_vals)(D1_dim by 1 par ip) { k =>

30 ((B_hoisted x C_vals(k)) * D_vals(k))

31 y{_+_13

32 A_vals.enq(tjA_vals)

33 A2_crd.enq(3)

34 }

35 A2_pos(i + 1) = jB_end

36 A_vals_d stream_store_vec(jB_start, A_vals, jB_len)
37 33

Figure 4. Spatial implementation of SDDMM with CSR
matrices. Lines highlighted in blue are memory management.

Stardust: Compiling Sparse Tensor Algebra to a Reconfigurable Dataflow Architecture

Format Language [6] Scheduling Language [27]

Map Com-
Tensor Memory]
A putation
Index Locations X
; . Environments
Notation (Section 5)

(Section 7)

N s
Concrete Index Notation (CIN) [16]
Map and environment scheduling relations

Memory Analysis (Section 6)
Co-iteration Rewrites (Section 8)
Parallel-Patterns (Section 8)

Lowerer

Stardust
’ Spatial [20] ‘

l SARA [41]
’ Capstan Dataflow Architecture [26] ‘

Figure 5. Stardust overview. Blue denotes new contributions.

Once tensors are placed on the accelerator using the for-
mat language, users must also map the computation that uses
those tensors onto to the accelerator (Section 7). To target
specialized hardware, a user writes a schedule that reorga-
nizes the computation until a sub-computation is exposed.
The user then maps the exposed computation to a special-
ized hardware pattern. To simplify scheduling, Stardust also
provides a single shorthand command that combines both
the computation reorganization and mapping.

Finally, Stardust uses a term rewriting algorithm to recur-
sively compile the CIN to parallel patterns. The algorithm
recursively lowers to parallel patterns depending on the iter-
ation properties of the tensors in the expression (Section 8).

5 Mapping Data to Memories

One key difficulty in generating Spatial code is determining
how data should be stored in the sparse RDA. The abstract
memory model in this work allows users to reason about
RDA memory simply as a single level. Stardust raises the
memory-model abstraction by providing a description of
coarse-grained memory regions, which the user explicitly
manages via the format language by denoting a tensor’s
memory scope as either off-chip or on-chip. Then, the com-
piler infers fine-grained memory details about the on-chip
memories during compilation, as discussed in Section 6.

5.1 Abstract Memory Model in the Format Language

Stardust abstracts over multiple Spatial memories into two
memory regions: either off (shared with the host) or on the
accelerator. Users place tensors from an expression onto one
of these memory regions. This memory model is essential
because it affects how Stardust generates code and how users
interact with that generated code. Therefore, the memory

632

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

// Define off-chip (global) tensor formats
Format csr_off({dense, sparse.}, offChip);
Format rm_off({dense, dense}, offChip);

Format cm_off({dense, dense}, {1,0}, offChip);
// Declare input and output tensors
Tensor<int> A({N,N}, csr_off);

Tensor<int> B({N,N}, csr_off);

Tensor<int> C({N}, rm_off);

9 Tensor<int> D({N}, cm_off);

R NV WDN =

// Define SDDMM computation (algorithm).
IndexVar i, j, k;

A(i, 3) =B(, 3) x C(i, k) * D(k, 3);

// Scheduling language: Define environment variables

IndexStmt stmt = A.getAssignment();

stmt = stmt.environment(innerPar, 16);

stmt = stmt.environment(outerPar, 2);

// Precompute accumulation into a ws register

// to accelerate it using a Reduce pattern

Tensor<int> ws(onChip);

stmt = stmt.precompute(B(i,j)*C(i,k)*D(k,3),{},{}, ws);

stmt = stmt.accelerate(forall(k, ws+=B(i,j)*C(i,k)*
D(k,3j)), Spatial, Reduction, innerPar);

Figure 6. Stardust input (user) code for SDDMM.

model of Stardust must not only differentiate between these
two regions, but also give users explicit control over them.
The format language of Stardust lets a user explicitly place
a tensor into a memory region of choice. The off-chip ten-
sors are globally accessible to all backends involved in the
computation (host and accelerators) whereas on-chip tensors
are only locally accessible to one accelerator backend. An
example of the format language for our SDDMM example
is shown in Figure 6 lines 2—4. Lines 6-9 in Figure 6 then
demonstrate how the format language is used to declare the
input and output tensors of an index notation expression.

5.2 Representing Data Movement in CIN

We give users control of on- to off-chip transfers because an
expression may have multiple transfer locations with differ-
ent performance characteristics [5, 14]. Since these decisions
impact end performance, it is better to separate that con-
cern from the Stardust compiler using schedules. Therefore,
Stardust’s new format language combines with the sched-
uling language such that users represent data movement in
CIN. Stardust expresses transfers between the host and the
accelerator within CIN as an assignment statement (A in
Figure 1). An assignment between a tensor annotated with
one memory region and another tensor in the other region
necessitates a transfer of data between them. The assignment
statement may have temporary tensors, which are tensor
workspaces that stores intermediate values.

A user inserts the memory-annotated temporary tensor
into CIN via the precompute scheduling command [16],
whose C++ declaration is in Table 1. The precompute com-
mand transforms a CIN statement with a sub-expression e
into a new CIN statement with a where sub-statement. A

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

Table 1. The precompute command from the scheduling
language of the TACO work [16, 27]. e[x"/x] denotes the
expression e with each occurrence of x replaced by x’.

Scheduling Commands Description

precompute (e, i*, iv*, 7) Inserts a where statement to precom-
pute a sub-expression e into a tempo-
rary tensor workspace 7~ with new in-
dices i,,* on the right-hand side of the
newly introduced where node.

precompute(e,ix,iy*,T)
AR S SN

VicA Vi A[T (ix)/e] where

Vi T (i) = €[iqy * [ix]

ViVj(Vk (Aij += BijCZnDZn) where Vk(C‘m Cik)
where Vi (D" = Dg;))

19 stmt
20 stmt

stmt.precompute(C(i,k), {k}, {k}, C_on)
stmt.precompute(D(k,j), {k}, {k}, D_on)

(a) The rewritten CIN after partial on-chip loads of Cyo+ys and Do in the
Jj-loop body using two precompute commands.

ViVij (Aij += BijC?,?Dzn') where V,—Vk(C?,‘j =

; Cix)

where V; Vi (Dz‘]‘. = Dy;)

19 stmt
20 stmt

stmt.precompute(C(i,k), {i,k}, {i,k}, C_on)
stmt.precompute(D(k,j), {k,j}, {k,j}, D_on)

(b) The rewritten CIN after initial load of C and D entirely before computa-
tion loops using two different precompute commands.

Figure 7. Two SDDMM CIN statements with corresponding
schedules demonstrating distinct memory transfer patterns.
Tensors A, B, C°", D°" live on-chip and C, D live off-chip.

where is a producer-consumer statement whose sides pro-
ducer and consumer sides both involve a temporary tensor
7. The producer side produces data from a sub-expression
e and stores it into 7 via an assignment statement. The
consumer side consumes data from 7~ and uses that data to
compute the result of the where statement. The transformed
CIN, including its assignment statements embedded with
memory movement information, is different depending on
how the user applies the precompute schedules.

Consider the two SDDMM examples in Figure 7 with dis-
tinct precompute schedules. The examples demonstrate how
modifications in the precompute command and tensor format
results in different CIN statements. The two schedules differ
in their on-chip temporary tensor memory sizes—Figure 7a
uses two temporary vectors whereas Figure 7b uses two
temporary matrices. The two schedules also differ in which
indices load the tensor data—Figure 7a partially loads rows
of C into (7" and columns of D into D;" at the j-loop body,
whereas Figure 7b loads the entire C and D matrices into
Cy! and Dl‘z;l respectively in the innermost loop. CIN embeds
memory movement within its forall and access indices. Fi-
nally, our SDDMM example in Figure 6 has yet another sched-
ule different from Figure 7, where off-chip data is loaded into
an on-chip scalar temporary (line 21).

633

Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Olukotun, and Fredrik Kjolstad

6 Physical Memory Mapping

As Stardust generates Spatial code, it transforms the abstract
memory model into the physical memory model of Spatial
(an abstraction that is closer to Capstan’s physical memory
design). The physical memory model is a finer-grained hier-
archy representation, containing four memory types instead
of two. As in a standard memory hierarchy, the memory
types start with the largest capacity and farthest from the
accelerator compute units and end with the smallest capacity
closest to the accelerator compute units. The physical mem-
ory types are now fixed-length, which is not a requirement
in the abstract memory model.

At this compilation step, sparse tensors are represented as
compressed data structures made up of several arrays. These
arrays are divided into chunks that are placed in different
physical memories. The placement involves three decisions:

1. which memory type to place a chunk in (since different
memory types have different capabilities),

2.

3.

Stardust solves the placement problem through a two-step
memory analysis. The pass first performs a memory pinning
analysis to decide which memory type to place each chunk in
(Section 6.2), and then performs a memory lifetime analysis
to generate allocation and transfer code (Section 6.3).

where allocate the memory in the code, and
where to transfer data between chunks in the code.

6.1 Tensor Data Structures

The compiler takes whole tensors in abstract memory and
reasons about their constituent arrays. We refer to these as
sub-arrays and they encode the physical data structure of a
dense or compressed tensor. Stardust represents tensor data
structures as per-level formats [6]. A tensor has multiple
coordinate levels and a single value level [17, 30]. The value
level always consists of a values array that stores actual ten-
sor data. The specific coordinate level sub-arrays depend
on the level format. If the format is a compressed (sparse)
coordinate level, the level stores compressed coordinates in
two arrays: positions and coordinates. Position arrays are ad-
dressed in an addr, addr + 1 fashion, while coordinate arrays
are addressed indirectly based on the obtained positions. If
the format is an uncompressed (dense) coordinate level, the
level stores only its dense dimension as a scalar sub-array. A
compressed tensor has one or more compressed levels.

The user provides format information to Stardust through
the format language. Consider the tensor array representa-
tion of B in our running SDDMM example (illustrated in
Figure 8). B’s CSR data structure is shown in Figure 8b and
format language description and sub-arrays are in Figure 8c.

6.2 Memory Pinning Analysis

Stardust maps tensor sub-arrays based on both sub-array and
memory properties. To leverage locality, these memory types
have different capacities, transfer speeds, access patterns,

Stardust: Compiling Sparse Tensor Algebra to a Reconfigurable Dataflow Architecture CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

1|val B2_pos = SRAM[..]
2 |B2_pos load ..

Format Description 3 Iterate (i .0
Bz'j Compressed Sparse Row (CSR) {d1: compressed, d2: uncompressed} 4 val B_crd = FIFO[.]
1 » B1_dimension 5 B2_crd load ..
5 3 Row P03|t|ons| 0(1(3|4|5 i<— Positions array B2_pos 6 val B_val = FIFO[.]
Col Coordinates | 1[0 | 2 | 1| 8 |«——— Coordinates array B2_crd 7 BZ2_val load ..
4 8 Iterate (3 ..)
5 Values 4— Values array B_vals 9 val B_access = B_vals.deq
10 Iterate (k ..
11 .. = B_access ..
(a) Sparse matrix B;; (b) B;; stored in CSR (c) B;j’s format description (d) Pseudocode for iterating over B;;

Figure 8. Example sparse B matrix Figure 8a used in SDDMM with its corresponding data structure Figure 8b and format
arrays Figure 8c. Figure 8d shows pseudocode generated by Stardust, where the colors correspond with the arrays in Figure 8b.

scopes, lifetimes, and programming constructs. In Spatial,
the physical memory model is a memory hierarchy with
(sparse/dense) DRAM — (sparse/dense) SRAM — FIFO —
Register (from largest to smallest). The compiler binds sub-
arrays to these memories and generates data transfers.
Stardust analyzes the memory needs of CIN to generate
Spatial code. The algorithm recursively traverses the CIN.
When the compiler sees a tensor access, it extracts that ten-
sor’s level format to identify the level’s sub-arrays. Then,
based on the access pattern of the tensor access and the ca-
pabilities of each sub-array, Stardust pins it to a physical
memory type. Stardust starts with the sub-arrays pinned to
an initial memory type based on the abstract memory region
at the outermost access level. Then, as Stardust traverses
the CIN, it propagates the sub-arrays outward to adjacent
memory types in the hierarchy based on the following rules,
which Stardust applies from the most strict to least strict:
Dense DRAMs. The system pins arrays of every off-chip
tensor to dense DRAMs, which are initialized by the host.
Sparse DRAMs. These provide an interface for direct off-
chip random accesses of sparse data. They are read-only
DRAM with custom compression to optimize reads of closely-
stored tiles. Stardust pins arrays to Sparse DRAMs when
there is no identifiable working set to bring on-chip.
Dense SRAMs. The system only binds arrays with affine
access patterns to dense SRAMs, including position arrays
(addressed linearly) and values arrays of fully dense formats
(which are generally traversed linearly).
Sparse SRAMs. These SRAMs include a reordering pipeline
that dynamically schedules SRAM requests to avoid con-
flicting banks. The reordering is necessary as sparse access
patterns are random, leading to many bank conflicts. Stardust
pins any on-chip, small, fixed-size arrays that have an access
pattern with reuse but random accesses to sparse SRAMs.
Bit Vectors. Bit vectors are on-chip integer streams that
densely pack sparse coordinate information [3, 26]. Stardust
automatically generates and manages bit vectors when two
compressed tensor levels are being simultaneously traversed.

Spatial requires the conversion from sparse coordinates to
bit vectors for co-iteration, since the Capstan architecture
does not support coordinate stream intersections.
FIFO Buffers. Stardust may pin arrays accessed linearly
with certain access patterns to FIFO buffers. Code that uses
FIFOs cannot enqueue excess data that is not popped, and
must pop data precisely when the storage lifetime ends. This
restricts FIFOs to coordinate arrays of sparse tensors and
value arrays that are accessed in order.
Registers. On-chip scalar variables are bound to registers.
The above memory pinning analysis does not consider
array sizes, since it allocates the maximal possible size for
one unit of memory. It assumes arrays fit based on the tiling
to the accelerator as described by the scheduling language.

6.3 Memory Lifetime Analysis

Once the compiler has pinned a memory type to each array,
it inserts code to allocate that memory and to transfer data
to and from it. We can think of this data allocation and
movement as larger tensors being partitioned into smaller
chunks. The data from these smaller chunks are then copied
and transferred to more local levels of memory, which is
done automatically by Stardust. Stardust analyzes these two
steps through one algorithm that determines the scope and
lifetime of each sub-array.

Stardust ensures that sub-arrays are filled with elements
before their use by adhering to three scoping rules:

1. The algorithm accesses value-arrays at the correspond-
ing pattern body of the innermost tensor index.

2. Coordinate arrays are always accessed at the index
pattern body corresponding to that coordinate’s level.

3. Position arrays are always accessed one pattern higher
than their corresponding coordinate array (with the
highest array scope being the start of the kernel).

Our lowering algorithm must access value elements at
the pattern body of the innermost tensor index, not lower
in the pattern hierarchy. Stardust can not access array el-
ements arbitrarily after array declarations (in subsequent

634

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

scopes) because this is not possible for memories that do
not support random access. Stardust addresses this scoping
property by accessing the element and storing it into a tem-
porary variable, which is used in place of the original value
at an inner sub-scope. Using a FIFO for an in-order traversal
of the levels, for example, requires that the FIFO values be
accessed precisely at the level of its tensor access index and
only used for one iteration of that loop. Figure 8d demon-
strates in blue that if the value array of B;; was bound to a
FIFO with the iteration pattern of the computation as V;V;V,
then B_vals array elements would have to be accessed in the
Jj-loop (corresponding to B’s last mode) instead of the k-loop
(the innermost loop) as in imperative code. This hoisting
behavior is also clear in Figure 4 on line 23, with the hoisted
element used later in line 32.

Data Allocations. The algorithm allocates tensor arrays
within the pattern body just above the pattern with their
first use by default. Emitting allocations immediately above
where the variable is necessary allows for better compute
efficiency and for ease of analysis, however, hoisting the
memory allocations into outer patterns and inserting reset
code between iterations is also possible. Lines 1, 4, and 6 in
Figure 8d demonstrates this tensor memory allocation.

Data Transfers. As Stardust allocates arrays, it will also
emit the correct data transfer pattern between different mem-
ory types. The data transfer analysis actually determines
when array elements are used in the code. Since data trans-
fers must occur before array elements are needed, Stardust
will place transfer code immediately after their associated
allocations. Finally, Stardust generates data transfer code as
different load and store keywords in Spatial. A transfer from
a memory higher in the hierarchy to a lower one is a load;
the inverse is a store. Depending on the exact memory types
in the transfer, Stardust will emit a slightly different keyword
(e.g., store from SRAM — DRAM vs. store_stream_vec
for FIFO — DRAM as in Figure 4 line 38).

Putting the analysis all together, consider the SDDMM
example in Figure 8 again. CIN describes the access B;; as
iteration over the index variables {i, j}, and the loops V;V;.
The innermost level of B corresponds to the index variable j
and iterates B2_pos and B2_crd. This means the generated
Spatial code should access both B_val and B2_crd inside the
Jj-pattern, so both arrays must be allocated right before in
the i-pattern body. The code accesses position arrays one
loop higher, meaning B2_pos is accessed in the i-loop and
is allocated at the top (before any iteration patterns occur).
The full algorithm can be found in Appendix B.

7 Mapping Computation to Hardware

Stardust approaches the mapping of computation similarly
to the memory mapping described in previous sections. The
abstract computation model in this work lets users reason

635

Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Olukotun, and Fredrik Kjolstad

about Spatial parallel patterns as special accelerator func-
tions. Through the scheduling language, users control the
mapping of sub-computations to certain parallel patterns,
when there is ambiguity in which one generate, for accelera-
tion. During lowering, Stardust compiles the entire compu-
tation, including these accelerated sub-computation regions,
to parallel patterns as described in Section 8.

Stardust models optimized computation on an accelera-
tor backend as a function of that backend. The computa-
tion model allows users to pass in arguments, or metadata,
to these backend functions through environment variables.
Additionally, Stardust does not assume that these backend
functions are necessarily parallel patterns. This computation
model is general enough to represent hardware modules
(units), accelerator kernels or function, parallel patterns, or
accelerator instructions as backend functions in Stardust.

Users leverage Stardust schedules to reshape CIN sub-
statements to expose sub-computations that can be mapped
to high-level accelerated primitives, which in this case are
the Spatial parallel patterns. Given any CIN statement S that
includes a sub-statement S’, where S’ has an equivalent in-
struction f for a given platform, the scheduling language can
transform S such that the sub-statement S’ is isolated. Then,
the sub-statement S” can be replaced and computed using the
specialized pattern or function f for a given backend instead
of being lowered directly to code. Since using the scheduling
language to do all of this CIN reshaping and mapping may
become tedious, we also provide a wrapper command for
productivity that will also accelerate the computation.

Concretely, consider the simple vector-vector multiplica-
tion statement (V;a; = b;c;) where the vectors start out off-
chip. Assuming there exists an optimized multiplier fpu(out,
ing, in,) for a given backend, the goal is to map the statement
to that function f,,,. However, the vectors involved in the
multiplication start off-chip, so the schedule must move all
vectors on-chip first before mapping fi,u1. We apply the fol-
lowing scheduling transforms to move the vectors on-chip
and call the backend function.

The map command can be used in conjunction with the
precompute command to optimize the kernel. The transfor-
mation is demonstrated by the following equations. Given
the scheduling command

c1 d=Efprecompute(b,- * cj, {1}, {i}, a®),

Via; = a®®
(V,-ai:b,-*c,- C—l)(i4i = 4;)

on _
where ¥;a?" = bc;

transforms the vector multiplication to store into an on-chip

result a®®. a®" is subsequently stored back off-chip into a.
Then, each off-chip input tensor needs a precompute on-

chip so that the vector-vector multiplication is computed

. .. . def
using only on-chip inputs. Given the command ¢, = Vt €
{b, ¢} precompute(t;, {i}, {i}, t°"), the transformation is

Stardust: Compiling Sparse Tensor Algebra to a Reconfigurable Dataflow Architecture

- on
Via; = aj
Via; = a" cz | where V;a?" = by"c?"
—
where V;a" = bjc; where V;b?" = b; >

on _
where V;c?" = ¢;

where t°" denotes an on-chip tensor format and t denotes

an off-chip format for all ¢ € tensors(e).
Lastly, the vector-vector multiplication sub-expression
maps to the vectorized multiplier f;,,; using only on-chip ten-

. def
sors as operands fiul(a®?, b°7, c°*). Given ¢35 = map(V;a{"
b{™ x 7", backend, fmut), the transformation is

Viai = a;’“

where fiu(a®®, b7, ™)
s.t. map (backend, fiu1)
where V;b?" = b;

where V;c?" = ¢;

Viai = a‘i’“
where V;a" = b
where V;b" = b;

where V;c{" = ¢;

€3
—

We also introduce a new accelerate scheduling com-
mand that composes all of these steps. accelerate is a com-
pound command consisting of one or more precompute com-
mands and a map command, and is necessary to map any
sub-statement to a new backend function. Intuitively, the
accelerate command first precomputes all off-chip tensors
on-chip for a sub-statement that is being accelerated and then
maps the on-chip tensors to the backend function f for sub-

. . . def
stituted computation. Given that S = Vi.a = e, we define the
accelerate(S’,backend, f,c)

accelerate transformation below. S
. . A

Snew is equivalent to S —— Sy, where the c{, ¢}, and c;

commands are defined as variadic versions of the ¢y, ¢,, and

c3 commands respectively. Specifically,

def ..
¢; = precompute(e, i, i*, a")

, def

¢y = For all t € tensors(e) precompute(t;, i*, ix, t°7)

c OI=efmap(S'[t°“/t for all ¢ € tensors(S’)], backend, f, c).

Finally, Stardust must pass accelerator and function meta-
data to the global scope of the generated code. Therefore, we
introduce an environment command to set these metadata
variables to values. Allowing environments in the sched-
uling language enables users to search the design space of
kernels parameterized by these metadata values. We leverage
leverage this command in Section 9 to sweep our evaluated
kernels for performance and improved resource utilization.

Our SDDMM example in Figure 6 shows the acceleration
of reductions into registers in lines 21-23 and the config-
uration of parallelization factors in lines 17-18. Some of
scheduling commands to target accelerators from Stardust
can be found in Table 1 and Table 2.

8 Compilation

Sparse accelerators speed up sparse tensor computations
by contracting together and iterating through tensor ele-
ments efficiently, and a good compiler must support these

636

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

Table 2. New scheduling commands necessary in Stardust
for targeting accelerators.

Scheduling Commands Description

map (S, backend, f, ¢) : Maps a CIN statement S to a backend-specific
computation strategy (specialized block, func-
tion, pattern, or instruction) f with some op-

tional constant factor, c.

map(S,backend, f,c)
_

S f (tensors(S), VT, ¢) s.t. map(backend, f)

T Where V is the set of variables {i*, r+ varx} defined by the scope
of the CIN sub-tree right before the statement S.

accelerate
(S, backend, f, c)

: A compound scheduling command that accel-
erates a sub-statement S by precomputing all
tensors of S into on-chip tensors for a new ex-
pression S’ and then maps f onto S’.

environment(var, c) : Sets a global hardware configuration variable

to some value, c.

environment(var,c)
-

95}

Sst.var=c

// Pattern Format: <Header> {<Indices> => <Body>}
// Uncompressed iteration and reduction
Foreach(len by inc par p) {i_dense => ...}
Reduce(reg)(len by inc par p) {i_dense => ...}
MemReduce(mem par mp)(len by inc par p) {i_dense => ...}
// Compressed single iteration (Reduce not shown)
Foreach(len by inc par p) {pos => ...}
Foreach(Scan(par=p, len=1, bitvector_A.deq))

{A, i_crd => ...}
// Compressed-compressed coiteration (Reduce not shown)
Foreach(Scan(par=p, len=1, bitvector_A.deq,

bitvector_b.deq)) {A, B, out, i_crd => ...}

0NNV WN =

Nel

10
11
12

Figure 9. Spatial parallel patterns for compressed and un-
compressed iterations of an index. The parallel-pattern
header and body with indices is shown.

algorithms natively. Stardust compiles these efficient sparse
iterations to Spatial through a novel co-iteration rewrite
system. The co-iteration is interleaved with the memory
lowering in Section 8 to generate the final parallel-pattern
code for Spatial as follows.

Environment variables set by the schedule are emitted
first to be globally scoped. Next, Stardust recurses over CIN
and replaces map-scheduled statements with their backend
functions (see Figure 4 line 31 for an example of the generated
Reduce function). Stardust then automatically lowers the
remaining V nodes to the correct parallel patterns depending
on the rewrite system. For each V node, the rewrite rules are
applied to each tensor access that has that V index.

Stardust uses the rewrite system shown in Table 3, for
matching fused (sparse) iteration constructs to parallel pat-
terns. The lowering mechanism recurses over the CIN and
applies the rewrite rules for every CIN V node. The iteration
for each forall with index i, involves a single level of all ten-
sors that have i in their tensor access. The rewrite system
decomposes the iteration’s fused tensor contraction set. The

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

contraction set is rewritten into smaller tensor iterator con-
traction subsets based on the iterator formats for that level
and the contraction type (intersection or union). The rewrite
rules that decompose the contraction set stem from the type
of iterations parallel patterns that Spatial supports (see Fig-
ure 9). The rewrite system uses set algebra to isolate binary
iteration patterns of: dense iteration, single compressed ten-
sor iteration, or compressed-compressed co-iteration. Then,
it lowers to the correct parallel pattern.

Formally, the rewrite system has a set of iterator con-
tractions I for a given V node is [= 710 T30 --- 0 T, s.t.
where the contraction o € {U,N} and n > 1,. The for-
mat of an iterator contraction set is defined as format(I) =
format(77) o format(7;) o ... o format(7,). The format of a
tensor format(7;) is defined as C,, for a compressed level, B,
for a bit vector level, and U the universe of coordinates for a
dense level. Stardust applies the rewrite rules in Table 3 to I
for every index. Lets look at the example of adding another
matrix to SDDMM to demonstrate the rewrite system. The
CIN for this computaiton is defined as V;V ;V B;; Cix * D j+E;
where both E and B are CSR. The iterator contraction of
level j is I = E; U (B, N Dy). The format of I is format(I) =
Cg, U (C, NU). lowerIter is called on format of I, which
will first call lowerIter[Cp, N U] = lowerIter[Cp, N U]
and call lowerlter on the result of that

Special care is taken when Stardust generates the bit vector
scanner parallel pattern (denoted by the lowerIter[8; o
B,] rule). Two compressed bit vectors are either logically
AND-ed for intersection or OR-ed for union by the sparse
bit-vector Scan patterns. As the scanner processes the bit-
vector data, it generates the following pattern indices: the
position of A, position of B, the output position out, and the
output coordinate i_crd. For each bit-vector iteration level,
Stardust actually emits two scanner patterns: one to calculate
the position sub-array entries by counting the number of
nonzero results and the other to compute entries for the
value sub-array. After the compiler emits the values scanner,
it will traverse through the computation and use atomic
accesses to sparse SRAMs for any value-array computation.

The compiler at this point generates the code within parallel-

pattern bodies. The compiler lowers pattern bodies as: pat-
tern indices that contain the iteration space of that pattern,
memory allocations and data transfers as determined by
Section 6, any other index calculations, and computation.

9 Evaluation

We demonstrate that Stardust compiled Spatial provides in-
creased programmability, while still being comparable in
performance to handwritten code. Stardust also enables the
generation of many useful sparse kernels for Capstan, in-
creasing the number of Capstan kernels by over 2x from
the original work. For these newly generated kernels, we

637

Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Olukotun, and Fredrik Kjolstad

Table 3. General rewrite system that lowers tensor itera-
tion contractions from forall nodes to parallel-patterns. Blue
statements emit code and comp. stands for compressed.

lowerIter[format(I)] = emit <backend block behavior>
5 lowerIter[U] = emit Foreach or Reduce(...=> i...)
= lowerIter[B4] = emit scanner for result positions
E emit Foreach(...=> pos...))
K lowerIter[C; and = emit B; = GENBITVECTOR(77)
%n 71 isresult] lowerIter(B;)
« lowerIter[Cy] = emit Foreach(...=> pos...))

g lowerIter[UU_] = lowerIter(U)
§ lowerIter[_UU] = lowerIter(U)
S lowerIter[UNU] = lowerIter(U)
g- lowerIter[C; NU] = lowerIter(Cy)
8 lowerIter[UN C;] = lowerIter(Cy)

lowerIter[C; o C;] = emit B; = GENBITVECTOR(77)
_s emit B, = GENBITVECTOR(73)
E lowerIter(8B; o B)
i? lowerIter[8B; o B;] = emit scanner for result positions
8 o =U = emit Foreach(Scan(...or...)
o =N = emit Foreach(Scan(...and...))
lowerIter[_] = format(77x) = lowerIter(71o...0 T¢),

z largest k < n that produces a match
o0

lowerIter(format(7ig o ... o 7))

Table 4. The expressions used to evaluate Stardust. Sparse
tensors are bolded.

Lines of Code

Name Expression Input Spatial
Sva Yi = Zj Ainj 10 44
Plus3 Aij:Bij+Cij+Dij 8 91
SDDMM Aij = 2k BijCikDji 17 62
Mat"’Mul y; = 2 aA]Tixj + PBzi 13 50
Residual yi =bi — Y Aijx;j 9 48
TTV Ajj = Dk Bijkck 13 73
™™ Aijk = ZlBilekl 11 83
MTTKRP Al] = Zkl Biklcjijl 15 86
InnerProd @ =3 B;jxCijk 11 115
Plus2 Aijk = Bijk + Cijk 6 163

also show significant performance improvements when us-
ing Stardust to target an RDA over compiling to a CPU or
GPU. our evaluation increases the usability of Capstan (from
the perspective of performance engineer programmability
and algorithm expressibility), while providing the end-user
performance improvements of an accelerator.

9.1 Methodology

We evaluate Stardust on a benchmark set that is completely
new for Capstan. The benchmarks are sparse tensor algebra
expressions listed in Table 4 from the literature [14, 17] with
Stardust user schedules shown in Table 5. We profile CPU
baselines on a 128-thread, four-socket Xeon E7-8890 v3 with

Stardust: Compiling Sparse Tensor Algebra to a Reconfigurable Dataflow Architecture

Table 5. User-provided schedules for the kernels in Table 4.
Scalar promotion (sPromote) inserts a scalar workspace as
a macro-scheduling command (instead of lines 21-22 in Fig-
ure 6) and communicate determines at which iteration pat-
tern the result is communicated back off-chip [35]. Parallel
is short for parallelize [27] and env is short for environment.

Name Schedule
SpMV stmt.parallel(j, Reduction, 16).sPromote().env("bp", 2)
Plus3 stmt.precompute(C(i,j)*D(i,j), {i, j}, {i, j}, ws)
SDDMM See Figure 4
Mat”Mul stmt.parallel(j, Reduction, 16).sPromote().env("bp", 2)
Residual stmt.parallel(j, Reduction, 16).sPromote().env("bp", 2)
stmt.accelerate(l, Reduction, 16).sPromote()
TTV . S s
.communicate(A(i,j), j)
stmt.accelerate(l, Reduction, 16).sPromote()
TT™
.communicate(A(i,j,k), j)
MTTKRP stmt.parallel(l., Reductl.on).parallel(k, Reductlon') .
.parallel(j, Reduction).sPromote().communicate(A, j)
stmt.parallel(l, Reduction, 16).parallel(k, Reduction, 16)
InnerProd .parallel(j, Reduction, 16).sPromote()
.communicate(A(i,j), j).env("bp", 2)
Plus2 stmt (default schedule)

Table 6. Capstan resources required by our compiled kernels.
The specific limiting resource(s) are shown in bold type.

PCU PMU MC Shuf

Par # % # % # % # %
SpMV 16 44 (22%) 41 (1% 35 (4% 16 (100%)
Plus3 8 55 (28%) 100 (50%) 58 (73%) 8 (50%)
SDDMM 12 163 (82%) 90 (45%) 61 (76%) 0 (0%
MatTMul 16 47 (24%) 66 (33%) 36 (45%) 16 (100%)
Residual 16 43 (22%) 65 (33%) 36 (45%) 16 (100%)
TTV 16 93 (47%) 91 (46%) 67 (84%) 16 (100%)
TTM 12 161 (81%) 89 (45%) 70 (88%) 0 (0%)
MTTKRP 8 140 (70%) 70 35%) 58 (73%) 0 (0%
InnerProd 8 53 (27%) 155 (78%) 80 (100%) 0 (0%)
Plus2 1 10 (5%) 23 (12%) 14 @18%) 2 (13%)

a 32KiB L1 data cache, 32 KiB L1 instruction cache, 256 KiB
L2 cache, 46 080 KiB L3 cache, and 1024 GiB RAM. The ma-
chine runs Ubuntu 18.04.3 LTS and is clocked at 2494 MHz.
We compile TACO using GCC 7.4.0 with OpenMP enabled
for the CPU baseline and NVCC version 10.0.0 for the GPU
baseline. The GPU baselines run on an AWS EC2 p3.2xlarge
instance with an NVIDIA V100 SXM-2 GPU. The GPU con-
tains 64 KiB registers and 12 KiB L0 instruction cache per
block, 128 KiB L1 data cache and shared memory and 2 KiB L1
constant cache per streaming multiprocessor, and 6144 KiB
L2 cache. The device RAM is 16 160 MiB. The GPU has 84
Volta SMs and is clocked at up to 1328 MHz. We exclude data
transfer time between the host and the GPU. We benchmark a
single iteration with a cold cache. We evaluate Capstan appli-
cations with the same cycle-accurate simulator as in [26, 39],
using an ideal memory model or Ramulator [15] to model
four channels of DDR4-2133 or HBM-2E (at 1800 GB/s).

638

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

DRAM Bandwidth Sensitivity

102 —— SpMV —=— Plus3
—— SDDMM —— Mat” Mul
10! —— Residual -—--- TTV
-=-- TTM -—-- MTTKRP
100 4 | ———-InnerProd -~-- Plus2
20 50 100 200 500 10002000

Bandwidth (GB/s)

Figure 10. Impact of memory bandwidth on performance.

All evaluations use the datasets shown in Table 8 in the
Appendix. For most 2D kernels, we use the same SuiteS-
parse matrices demonstrated in the original Capstan paper
for a fair comparison between Stardust generated and hand-
written Capstan kernels [26]. However, Capstan’s original
architectural design does not perform well for highly sparse
(less than about 5%) tensors. Therefore, we also generate syn-
thetic datasets for Plus3, InnerProd, and Plus2 as described
in detail in Appendix A.

We use CSR formats for all sparse 2D matrices and com-
pressed sparse column (CSC) for Mat” Mul. For 3D tensors,
we use a CSR-like format for InnerProd and Plus2 and com-
pressed sparse fiber (CSF) otherwise. We use the above for-
mats for all platforms except the GPU baseline result tensors,
which are fully dense since the TACO codebase [18] does
not support sparse results for their GPU backend.

9.2 Resource Consumption

To understand which resources limit the performance of Star-
dust generated Spatial code, we provide some details about
Capstan’s design. Capstan is built as a grid of 200 vectorized
compute units (PCUs) and 200 memory units (PMUs) with
a surrounding ring of 80 memory controllers (MCs). Each
PCU has six pipeline stages and 16 vector lanes that perform
operations. Each PMU has 16 banks, supporting one read
and write per bank per cycle. Capstan also has 16 shuffle
networks (Shuf) that enable sparse accesses beyond the PMU,
but they limit outer-level parallelism to 16.

To make good use of Capstan’s hardware, a compiler
must extract parallelism at both an inner-loop (vectorization)
and outer-loop (cross-PCU) level. Outer-loop parallelism is
harder to extract because it requires the compiler to explicitly
manage distributed memories across physically unrolled par-
titions. Based on Capstan’s distributed nature, it is unlikely
that an application could use 100% of all on-chip resources.
Limiting resources vary, but all applications except Plus2
make good use of resources via outer parallelization because
they approach a limit in at least one resource dimension. By
hitting physical resource limits, the compiler ensures that
users can take full advantage of Capstan.

One key factor in RDA (and GPU) out-performance is a
high-bandwidth memory system. Figure 10 shows that our
applications (except Plus2, which is not outer-parallelized)

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Olukotun, and Fredrik Kjolstad

Table 7. Normalized runtimes (geomean of all datasets) to the compiled Capstan (HBM-2E) platform. We compile to Capstan,
while CPU and GPU code is generated by TACO. Only SpMV, highlighted in gray, has handwritten kernels.

Matrix Kernels

Tensor Kernels

Platform (Memory) Compiled | SpMV Plus3 SDDMM Mat”’Mul Residual TTV TTM MTTKRP InnerProd Plus2 gmean
Capstan (HBM2E) No 0.65 — - - - — - - - — 0.65

Capstan (Ideal Net & Mem) Yes 0.77 0.24 0.78 0.75 0.75 0.49 0.57 0.44 0.35 0.42 0.52
Capstan (HBM2E) Yes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Capstan (DDR4) Yes 12.13 10.07 8.33 12.31 12.06 4.92 9.80 7.76 3.28 1.72 7.09

Plasticine (HBM2E) No 8.72 — - — - — - - - — 8.72

V100 GPU Yes 3.15 41.89 18,259.50 3.59 3.54 23285 284.47 6.77 2.76 381.38 41.31

128-Thread CPU Yes 27.90 236.40 220.28 376.52 384.08 335.99 8.47 398.72 178.34 59.22 138.07

are able to make good use of DRAM bandwidth as well. Spa-
tial’s decoupled access-execute memory model lets Stardust
factor out off-chip memory accesses into large, bulk transfers
that expose significant memory parallelism.

9.3 Case Study: Sparse Matrix-Vector Multiplication

Sparse matrix-vector multiplication (SpMV) is the only ap-
plication where a handwritten Spatial implementation exists.
The first column of Table 7 provides a comparison of SpMV
across all platforms. The Capstan and Plasticine rows from
Table 7 are handwritten Spatial SpMV kernels from [25, 26],
respectively. All Capstan and Plasticine rows in Table 7 that
are not compiled (where the Compiled column is No) are
handwritten Spatial SpMV kernels.

SpMV is simpler, making it easy to parallelize. Therefore,
SpMV applications compiled by Stardust have a speedup
relative baselines that is lower than other applications. How-
ever, the version of SpMV run in the original Capstan paper
(Capstan, uncompiled) is more optimized than the compiled
version (Capstan, compiled) because the code generated by
Stardust uses the shuffle network (shown by SpMVxShuf
in Table 6) to coordinate parallel accesses to the input vec-
tor and the handwritten Capstan SpMV does not. Instead,
the handwritten Capstan SpMV duplicates the input vector,
which avoids shuffle-network contention and permits outer-
parallelization beyond the shuffle network’s limit of 16. We
expect that these additional optimizations can be automated
in the future, but for now they demonstrate that a dedicated
hardware expert can get better performance compared to
Stardust, albeit at the cost of significant development effort.

To demonstrate that Stardust both increases programmer
productivity and decreases development effort in targeting
Capstan, we compare the lines of code (LOC) of the hand-
written Spatial SpMV kernel against the Stardust kernel for
Capstan. The compiled SpMV kernel uses 10 input LOC
total—a 76% decrease from the 52 lines of Spatial required
for the handwritten version. Moreover, we believe that the
input code to Stardust is simpler to write and to port to new
architectures. The code required for Stardust includes: 3 LOC
for the tensor formats, 2 LOC for the algorithm, 4 LOC for
the scheduling transformations, and 1 LOC to compile and

639

output our kernel. With the use of an auto-scheduler, which
we leave as future work, the LOC could be cut down from 10
to 6 by removing the user-provided scheduling code. These
numbers support the use of our compiler as a programmer
productivity tool that enables the rapid development of new
sparse tensor kernels for an RDA accelerator.

9.4 Tensor Algebra Expression Performance

Performance results for all platforms and applications are
shown in Table 7. Stardust compiled applications are, on
average, 138x faster than CPU baselines, and 41x faster than
GPU variants. These performance benefits further motivate
using RDAs—and thus a compiler to target RDAs.

Our TACO GPU baseline performance is significantly
worse than both the literature [27] and compiled Capstan be-
cause TACO does not natively support sparse tensor outputs
on the master branch of the system code base [18]. Most of
the time is spent zero initializing the fully dense result tensor
in device memory—which is often extremely large—on the
host. Because Capstan is designed to outperform the GPU for
sparse applications, it may seem counter-intuitive that the
GPU speedup for MTTKRP is relatively low. However, these
kernels have a dense dimension that the GPU can vectorize.

Currently, a comparison between compiled and handwrit-
ten implementations beyond SpMYV is not possible since these
kernels do not exist. The handwritten applications take con-
siderable time to implement by an expert in Spatial, SARA,
Capstan, and the domain of sparse applications. Our system
is able to compile to 9 new applications, motivating the use
of Stardust to generate new sparse tensor algebra kernels.

10 Related Work

Stardust is, to the best of our knowledge, the first software
stack to enable end-to-end compilation from tensor index
notation to the architectural simulation of a reconfigurable
sparse accelerator. There is, however, prior work on sparse
tensor algebra systems targeting von Neumann architectures,
domain-specific architectures that provide alternative targets
for a compiler like ours, and different methodologies for
programming these sparse DSAs.

Stardust: Compiling Sparse Tensor Algebra to a Reconfigurable Dataflow Architecture

Sparse Tensor Algebra Compilers for von Neumann
architectures. Several compilers have been proposed for
sparse tensor algebra, but these compilers target CPUs [1, 2,
13, 17, 21, 32, 37], GPUs [27, 37], and distributed machines
of CPUs and GPUs [36] whereas our system compiles to
domain-specific sparse dataflow hardware. Like many prior
work compilers, we use an input API that follows a sepa-
ration of concerns and start from an abstract loop-based
IR. Stardust is unique, however, because it emits code with
sparse iteration on bit vectors, memory management, and
parallel patterns in the Spatial programming model.

Sparse Domain-Specific Hardware. Many fixed-function
accelerators have been proposed for sparse kernels [10, 11,
23, 28, 29, 31, 38, 40, 42], however, we will focus our discus-
sion on reconfigurable sparse accelerators as they need for
compilation. Our system targets Capstan [26] because it is
a flexible RDA with an easy-to-understand programming
model: it supports sparse iteration with composable parallel
patterns. However, sparse iteration spaces are a general rep-
resentation, and the ideas from Stardust could influence the
software stack of any reconfigurable sparse accelerator. The
SPU [7] and ExTensor [12] are two recent sparse DSAs with a
different programming model than Capstan. Both are tiled ar-
chitectures with explicit on-chip memory accesses, but they
have different methods for combining sparse data. The SPU
uses a stream-join programming abstraction in C code to
combine sparse indices and a custom RDA fabric to perform
the intersection operations. Similarly, ExTensor uses a pro-
gramming model based on hierarchical tensor intersectors
that are programmed through hardware configurations.

Programming Sparse Dataflow Architectures. The Spa-
tial compiler [20] and the idiomatic spatial accelerator com-
piler of Weng et al. [34] show how to compile high-level
control-flow languages to sparse RDAs and CGRAs. The
Custard compiler [14], on the other hand, shows how to
compile sparse tensor algebra to an abstract machine rep-
resenting reconfigurable streaming dataflow accelerators.
The Mosaic compiler shows how to isolate a sparse tensor
algebra sub-expression and to call out to a user-defined ex-
ternal function on that sub-expression. Our work is the first
of these compilers to identify and compile a tensor index
notation sub-expression all the way to an RDA.

11 Conclusion

We described the first compiler that enables the end-to-end
compilation of sparse tensor algebra from tensor index no-
tation to a sparse reconfigurable dataflow accelerator. We
expect Stardust to be the first of many compilers from high-
level sparse languages to target these sparse accelerators. We
expect its design—of giving users abstract control of mem-
ory and computation and having the compiler complete the

640

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

Table 8. The datasets used to evaluate Stardust.

App Name Dimensions Density
> EET; besstk30 [8] 28924 X 28924 2.48 x 1073
23 2 ckt11752_de_1 [8] 49702 x 49702 1.35 x 107*
P QEE Trefethen_20000 8] 20000 X 20000 1.39 x 1073
Q random 800 X 800 1.00 x 1072
2 random 800 X 800 10.00 X 1072
random 800 X 800 50.00 x 1072
E g facebook [33] 1591 X 63891 X 63890 1.14 x 1077

v

; = 2o random 200 X 200 X 200 1.00 x 1072
Es %E random 200 X 200 X 200 10.00 x 1072
£ random 200 X 200 X 200 50.00 X 1072

remaining accelerator mapping information—will influence
future compiler designs for domain-specific accelerators.

12 Acknowledgments

We would like to thank Manya Bansal, James Dong, Parthiv
Krishna, Rubens Lacouture, Jackson Melchert, Aviral Pandey,
Alexander J. Root, Marco Siracusa, Amalee Wilson, Genghan
Zhang, and the anonymous reviewers for their feedback on
this paper. We would especially like to thank Rohan Yadav
and Scott Kovach for help on technical ideas and formalisms
in the paper. This work was supported in part by the NSF un-
der grant numbers 1937301, 2028602, CCF-1563078, 1563113,
and CCF-2216964. This research was also supported in part
by the Stanford Data Analytics for What’s Next (DAWN)
Affiliate Program and the Semiconductor Research Corpora-
tion (SRC) PRISM center. Olivia Hsu was supported in part
by an NSF GRFP. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
aforementioned funding agencies.

A Evaluation Datasets

Below is a description of the datasets used to evaluate Star-
dust in Section 9. As mentioned, we use the same SuiteS-
parse matrices demonstrated in the original Capstan paper
for most 2D kernels to maintain a fair comparison between
Stardust-generated and handwritten Capstan kernels [26].
SuiteSparse only contains matrices and cannot be used for
higher-order kernels. Therefore, we use the real-world Face-
book [33] tensor for most 3D kernels as in prior work [17].

The highly sparse nature (>99%) of these datasets makes
them unideal for Capstan’s original bitvector design as bitvec-
tors still have to iterate over a dense iteration space divided
by a constant factor (the bitvector size) [26]. Therefore, we
use uniformly randomly generated data with higher densi-
ties, as in the original Capstan work, for Plus3, InnerProd,
and Plus2. These expressions are prone to slowdowns on
high-sparsity data since they perform higher-order compu-
tation and/or have multiple sparse operands. For Plus3, we
generate the other operands by rotating the input matrix’s
columns right by one and two [14]. For Plus2 and InnerProd,

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Olukotun, and Fredrik Kjolstad

Algorithm 1 Memory Insertion Algorithm

// An iteration graph (IterationGraph) denotes which index variable (IndexVar) paths (Path) are taken for the CIN expression [17]
procedure ForaLL:LOWERWITHMEMINSERT(CinNode N, Tensors T, IterationGraph G) > Forall Node
Var indexvar = N.getIndexVar()
// Iterators (Iterator) determine how to iterate through the forall loop based on a combination of the tensor level formats at that index variable
Iterator iterator = N.getlterator()
if iterator is a dense (dimension) or single sparse (position) iteration then
for all Tensor tensor in T do
Path path = G.getPaths(tensor)
// The distance of an index variable from a tensor’s path denotes how many levels away from an access index variable it is
if indexvar in path && distance(indexvar, path) == 1 && tensor.getFormat(indexvar) == Sparse then
MemType posMem = GETMEMORYTYPE(ArrayType::pos, tensor, indexvar) > Memory type based on case conditions from Section 6.2
Emrt(initialize tensor_pos to posMem)
EmrT(tensor_pos load from tensor.getPrevMemType())
tensor.setPrevMemType(ArrayType::pos, posMem)
else if indexvar in path && distance(indexvar, path) == 0 && tensor.getFormat(indexvar) == Sparse then
MemType crdMem = GETMEMORYTYPE(ArrayType::crd, tensor, indexvar)
Emrr(initialization of tensor_crd to crdMem)
Emrt(tensor_crd load from tensor.getPrevMemType(ArrayType::crd, crdMem))
tensor.setPrevMemType(ArrayType::crd, crdMem)
// We are at the innermost access index variable of a tensor if the index variable is at the last position in that tensor’s path
if path.at(-1) == indexvar then
MemType valMem = GETMEMORYTYPE(ArrayType::val, tensor, indexvar)
Emr(initialize tensor_val to valMem)
Emrt(tensor_val load from tensor.getPrevMemType(ArrType::val))
tensor.setPrevMemType(ArrayType::val, valMem)
Emrt(Parallel pattern to iterate node based on IndexVar indexvar and Iterator iter)) > Emit parallel pattern
CinNode forallBody = N.getChild()
for all Tensor tensor in T do
Path path = G.getPaths(tensor)
// Hoist out tensors as tensor values must be read at the same level of their innermost access indexvar
if indexvar in path && distance(indexvar, path) == 0 && path.at(-1) == indexvar then
Emrt(tensor_hoisted = read of tensor_vals)
forallBody = forallBody[tensor_hoisted/tensor_val]
else if iter is sparse coiteration then
// Generate FIFO read from appropriate memory location
for all Tensor tensor in T do
GENERATEFIFOSFROMMEM(tensor)
// Generate bitvectors from FIFOs
GENERATEITERATORBITVECTORS(N, indexvar, iter) > Function that follows rewrite rules from Section 8
EmrT(Scan across bitvectors using iteration algebra and rewrite system in Section 8) > Emit parallel pattern
// Proceed normally by emitting loop-body code
LoweRWITHMEMINSERT(forallBody)

we generate the additional operand by rotating the even and transfers (stores) of the result tensor since the analysis is
coordinates of the last tensor dimension by one. similar as input tensor loading but occurs after the innermost

CIN forall body code has been generated. We provide more
B Full Memory Analysis Algorithm details associated with the memory analysis for compressed

(sparse) level format arrays since they are more complex
to reason about, but a simpler analysis occurs with uncom-
pressed (dense) level formats that only needs to emit code
for a scalar array containing the dense dimension.

We present the memory analysis algorithm as described
in Section 6 below in Algorithm 1. The method LowER-
WITHMEMINSERT is called recursively on the concrete index
notation (CIN) abstract syntax tree (AST) during Stardust
code generation. Algorithm 1 only shows the LowERWITH-
MEMINSERT function definition for a V node since all other
nodes behave similarly to the LowER function as in prior
work [6, 16, 17, 19, 27] with some automatic inference ex-]))])

[1] Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasi-

tensions on men.’lory types dunng the creation of temporary lache, Bixia Zheng, and Fredrik Kjolstad. 2022. Compiler Support for
tensors and variables based on the GETMEMORYTYPE func- Sparse Tensor Computations in MLIR. ACM Trans. Archit. Code Optim.

tion. The algorithm shown also omits memory allocation 19, 4, Article 50 (sep 2022), 25 pages. https://doi.org/10.1145/3544559

References

641

https://doi.org/10.1145/3544559

Stardust: Compiling Sparse Tensor Algebra to a Reconfigurable Dataflow Architecture

[2] Aart].C.Bik and Harry A. G. Wijshoff. 1993. Compilation Techniques

[11

[12

[13

(14

[15

[16

[17

[utr}

=

—

]

—

]

]

]

—

—

for Sparse Matrix Computations. In International Conference on Super-
computing. ACM, 416-424. https://doi.org/10.1145/165939.166023
Preston Briggs and Linda Torczon. 1993. An efficient representation
for sparse sets. ACM Letters on Programming Languages and Systems
(LOPLAS) 2, 1-4 (1993), 59-69.

Alex Carsello, Kathleen Feng, Taeyoung Kong, Kalhan Koul, Qiaoyi
Liu, Jackson Melchert, Gedeon Nyengele, Maxwell Strange, Keyi
Zhang, Ankita Nayak, Jeff Setter, James Thomas, Kavya Sreedhar,
Po-Han Chen, Nikhil Bhagdikar, Zachary Myers, Brandon D’Agostino,
Pranil Joshi, Stephen Richardson, Rick Bahr, Christopher Torng, Mark
Horowitz, and Priyanka Raina. 2022. Amber: A 367 GOPS, 538 GOPS/W
16nm SoC with a Coarse-Grained Reconfigurable Array for Flexible
Acceleration of Dense Linear Algebra. IEEE Symposium on VLSI Tech-
nology & Circuits.

Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017.
Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks. IEEE Journal of Solid-State Circuits
52, 1(2017), 127-138. https://doi.org/10.1109/JSSC.2016.2616357
Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. For-
mat Abstraction for Sparse Tensor Algebra Compilers. Proc. ACM
Program. Lang. 2, OOPSLA, Article 123 (Oct. 2018), 30 pages.
Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. 2019. To-
wards general purpose acceleration by exploiting common data-
dependence forms. In Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. 924-939.

Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse
matrix collection. ACM Transactions on Mathematical Software (TOMS)
38,1 (2011), 1-25.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse
GPU Kernels for Deep Learning. IEEE Press.

Paul Grigoras, Pavel Burovskiy, Eddie Hung, and Wayne Luk. 2015.
Accelerating SpMV on FPGAs by compressing nonzero values. In 2015
IEEE 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines. IEEE, 64-67.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. 2016. EIE: Efficient inference engine
on compressed deep neural network. ACM SIGARCH Computer Archi-
tecture News 44, 3 (2016), 243-254.

Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal
Crago, Aamer Jaleel, Edgar Solomonik, Joel Emer, and Christopher W
Fletcher. 2019. ExTensor: An accelerator for sparse tensor algebra. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. 319-333.

Rawn Henry, Olivia Hsu, Rohan Yadav, Stephen Chou, Kunle Olukotun,
Saman Amarasinghe, and Fredrik Kjolstad. 2021. Compilation of Sparse
Array Programming Models. Proc. ACM Program. Lang. 5, OOPSLA,
Article 128 (oct 2021), 29 pages. https://doi.org/10.1145/3485505
Olivia Hsu, Maxwell Strange, Ritvik Sharma, Jaeyeon Won, Kunle
Olukotun, Joel S. Emer, Mark A. Horowitz, and Fredrik Kjelstad. 2023.
The Sparse Abstract Machine. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA,
710-726. https://doi.org/10.1145/3582016.3582051

Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast
and Extensible DRAM Simulator. IEEE Comput. Archit. Lett. 15, 1 (Jan.
2016), 45-49. https://doi.org/10.1109/LCA.2015.2414456

Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe.
2019. Tensor Algebra Compilation with Workspaces. In 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
180-192. https://doi.org/10.1109/CG0.2019.8661185

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. 2017. The tensor algebra compiler. Proceedings

642

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

of the ACM on Programming Languages 1, OOPSLA (2017), 1-29.
Fredrik Kjolstad, Ryan Senanayake, Stephen Chou, Rawn Henry, David
Lugato, Shoaib Kamil, Mark Glines, Olivia Hsu, Patricio Noyola, Willow
Ahrens, Rohan Yadav, Genghan Zhang, Nirvik Baruah, Advay Pal,
Yishen Chen, Sam Kaplan, Penporn Koanantakool, Gurtej Kanwar,
Yisu Remy Wang, Lorenzo Chelini, Shizhi Tang, Daniel Bougeois,
David Hagen, and Syoyo Fujita. 2023. The Tensor Compiler (TACO).
https://github.com/tensor-compiler/taco.

Fredrik Berg Kjolstad. 2020. Sparse tensor algebra compilation. Ph.D.
Dissertation. Massachusetts Institute of Technology.

David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,
Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pe-
dram, Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: A Lan-
guage and Compiler for Application Accelerators. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (Philadelphia, PA, USA) (PLDI 2018). As-
sociation for Computing Machinery, New York, NY, USA, 296-311.
https://doi.org/10.1145/3192366.3192379

Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. 1997. A relational
approach to the compilation of sparse matrix programs. In Euro-
Par Parallel Processing. Springer, Passau, Germany, 318-327. https:
//doi.org/10.1007/BFb0002751

Qiaoyi Liu, Jeff Setter, Dillon Huff, Maxwell Strange, Kathleen Feng,
Mark Horowitz, Priyanka Raina, and Fredrik Kjolstad. 2023. Unified
Buffer: Compiling Image Processing and Machine Learning Applica-
tions to Push-Memory Accelerators. ACM Trans. Archit. Code Optim.
20, 2, Article 26 (mar 2023), 26 pages. https://doi.org/10.1145/3572908
Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amar-
nath, Siying Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw,
Trevor Mudge, and Ronald Dreslinski. 2018. OuterSPACE: An outer
product based sparse matrix multiplication accelerator. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 724-736.

Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago,
Kartik Hegde, Rangharajan Venkatesan, Stephen W. Keckler, Christo-
pher W. Fletcher, and Joel Emer. 2019. Buffets: An Efficient and Com-
posable Storage Idiom for Explicit Decoupled Data Orchestration. In
Proceedings of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Prov-
idence, RI, USA) (ASPLOS ’19). Association for Computing Machinery,
New York, NY, USA, 137-151. https://doi.org/10.1145/3297858.3304025
Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle
Olukotun. 2017. Plasticine: A Reconfigurable Architecture For Parallel
Paterns. SIGARCH Comput. Archit. News 45, 2 (June 2017), 389-402.
https://doi.org/10.1145/3140659.3080256

Alexander Rucker, Matthew Vilim, Tian Zhao, Yaqi Zhang, Raghu
Prabhakar, and Kunle Olukotun. 2021. Capstan: A Vector RDA for
Sparsity. In MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture (Virtual Event, Greece) (MICRO ’21). Association
for Computing Machinery, New York, NY, USA, 1022-1035. https:
//doi.org/10.1145/3466752.3480047

Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson,
Stephen Chou, Shoaib Kamil, Saman Amarasinghe, and Fredrik Kjol-
stad. 2020. A Sparse Iteration Space Transformation Framework for
Sparse Tensor Algebra. Proc. ACM Program. Lang. 4, OOPSLA, Article
158 (Nov. 2020), 30 pages. https://doi.org/10.1145/3428226

Yi Shan, Tianji Wu, Yu Wang, Bo Wang, Zilong Wang, Ningyi Xu, and
Huazhong Yang. 2010. FPGA and GPU implementation of large scale
SpMV. In 2010 IEEE 8th Symposium on Application Specific Processors
(SASP). IEEE, 64-70.

Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru
Zhang. 2020. Matraptor: A sparse-sparse matrix multiplication ac-
celerator based on row-wise product. In 2020 53rd Annual IEEE/ACM

https://doi.org/10.1145/165939.166023
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1145/3485505
https://doi.org/10.1145/3582016.3582051
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/CGO.2019.8661185
https://github.com/tensor-compiler/taco
https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1007/BFb0002751
https://doi.org/10.1007/BFb0002751
https://doi.org/10.1145/3572908
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1145/3140659.3080256
https://doi.org/10.1145/3466752.3480047
https://doi.org/10.1145/3466752.3480047
https://doi.org/10.1145/3428226

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

[30]

(31]

(34]

(35]

(36]

(37]

International Symposium on Microarchitecture (MICRO). IEEE, 766-780.
Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2020.
Efficient Processing of Deep Neural Networks. Morgan & Claypool
Publishers.

Yaman Umuroglu and Magnus Jahre. 2014. An energy efficient column-
major backend for FPGA SpMV accelerators. In 2014 IEEE 32nd Inter-
national Conference on Computer Design (ICCD). IEEE, 432-439.
Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data
Transformations for Sparse Matrix Code. SIGPLAN Not. 50, 6 (June
2015), 521-532. https://doi.org/10.1145/2813885.2738003

Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P Gum-
madi. 2009. On the evolution of user interaction in facebook. In Pro-
ceedings of the 2nd ACM workshop on Online social networks. 37-42.
Jian Weng, Sihao Liu, Dylan Kupsh, and Tony Nowatzki. 2022. Uni-
fying Spatial Accelerator Compilation With Idiomatic and Modular
Transformations. IEEE Micro 42, 5 (2022), 59-69. https://doi.org/10.
1109/MM.2022.3189976

Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. DISTAL: The
Distributed Tensor Algebra Compiler. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (San Diego, CA, USA) (PLDI 2022). Association for
Computing Machinery, New York, NY, USA, 286-300. https://doi.org/
10.1145/3519939.3523437

Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. SpDISTAL: Com-
piling Distributed Sparse Tensor Computations. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis (Dallas, Texas) (SC °22). IEEE Press, Article 59,
15 pages.

Zihao Ye, Ruihang Lai, Junru Shao, Tiangi Chen, and Luis Ceze. 2023.
SparseTIR: Composable Abstractions for Sparse Compilation in Deep

643

[38]

[39]

[40]

[41]

[42]

Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Olukotun, and Fredrik Kjolstad

Learning. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). Association
for Computing Machinery, New York, NY, USA, 660-678. https://doi.
org/10.1145/3582016.3582047

Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. 2021.
Gamma: leveraging Gustavson’s algorithm to accelerate sparse matrix
multiplication. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems. 687-701.

Yaqi Zhang, Alexander Rucker, Matthew Vilim, Raghu Prabhakar,
William Hwang, and Kunle Olukotun. 2019. Scalable Interconnects for
Reconfigurable Spatial Architectures. In 2019 ACM/IEEE 46th Annual
International Symposium on Computer Architecture (ISCA). 615-628.
Yan Zhang, Yasser H Shalabi, Rishabh Jain, Krishna K Nagar, and
Jason D Bakos. 2009. FPGA vs. GPU for sparse matrix vector multiply.
In 2009 International Conference on Field-Programmable Technology.
IEEE, 255-262.

Yaqi Zhang, Nathan Zhang, Tian Zhao, Matt Vilim, Muhammad
Shahbaz, and Kunle Olukotun. 2021. SARA: Scaling a Reconfig-
urable Dataflow Accelerator. In 2021 ACM/IEEE 48th Annual Inter-
national Symposium on Computer Architecture (ISCA). 1041-1054.
https://doi.org/10.1109/ISCA52012.2021.00085

Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020.
Sparch: Efficient architecture for sparse matrix multiplication. In 2020
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA). IEEE, 261-274.

Received 2024-05-30; accepted 2024-07-22

https://doi.org/10.1145/2813885.2738003
https://doi.org/10.1109/MM.2022.3189976
https://doi.org/10.1109/MM.2022.3189976
https://doi.org/10.1145/3519939.3523437
https://doi.org/10.1145/3519939.3523437
https://doi.org/10.1145/3582016.3582047
https://doi.org/10.1145/3582016.3582047
https://doi.org/10.1109/ISCA52012.2021.00085

	Abstract
	1 Introduction
	2 Background
	2.1 Sparse Tensor Algebra Compilation
	2.2 Capstan and Spatial

	3 Motivating Example
	4 Overview
	5 Mapping Data to Memories
	5.1 Abstract Memory Model in the Format Language
	5.2 Representing Data Movement in CIN

	6 Physical Memory Mapping
	6.1 Tensor Data Structures
	6.2 Memory Pinning Analysis
	6.3 Memory Lifetime Analysis

	7 Mapping Computation to Hardware
	8 Compilation
	9 Evaluation
	9.1 Methodology
	9.2 Resource Consumption
	9.3 Case Study: Sparse Matrix-Vector Multiplication
	9.4 Tensor Algebra Expression Performance

	10 Related Work
	11 Conclusion
	12 Acknowledgments
	A Evaluation Datasets
	B Full Memory Analysis Algorithm
	References

