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Abstract
We introduce Stardust, a compiler from sparse tensor algebra

languages to a sparse reconfigurable dataflow architecture

via a parallel-patterns programming model. Stardust lets

performance engineers specify the placement of data into

memories separately from the placement of computation

onto compute units. Users first schedule data placement

onto an abstract memory model, and then Stardust binds that

data to complex, on-chip physical memories. With guidance

from user schedules, Stardust binds computation using these

on-chip data structures to the appropriate parallel patterns.

Through cycle-accurate simulation, we show that Stardust

generates nine more tensor algebra kernels than the original

Capstan sparse RDA work. The generated kernels perform,

on average, 138× better than generated CPU kernels and 41×
better than generated GPU kernels.

CCS Concepts: • Computer systems organization →
Data flow architectures; • Software and its engineering
→ Domain specific languages; Compilers.

Keywords: sparse tensor algebra, DSLs, compilers, dataflow,

reconfigurable architectures, parallel patterns
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1 Introduction
Reconfigurable dataflow architectures (RDAs) with sparse

operation support [7, 12, 26] is a promising approach for

accelerating sparse tensor algebra. To enable widespread use,

these RDAs should be accessible to performance engineers

who do not understand the specifics of the underlying ar-

chitecture. However, state-of-the-art RDAs are difficult to

program; typically, only users who have low-level knowl-

edge of the architecture (e.g., the designers themselves) can

effectively program them. Currently, programmers use hard-

ware configuration files [12] or languages [7, 20, 26] with

low-level architectural information embedded in the pro-

gramming model to program RDAs.

To make RDAs easier to program, we must raise the pro-

gramming abstraction above that of a specific RDA design. A

higher-level programming abstraction enables performance

engineers, who are not RDA experts, to write sparse tensor

algebra kernels that leverage these RDAs. If performance

engineers can readily develop sparse libraries with RDA

acceleration, then end-users will get better application per-

formance. Such programming abstractions can be realized

through advances in compilation techniques.

Tensor index notation (or Einsumnotation) is a natural rep-

resentation of sparse tensor algebra computation. It is a math-

ematical notation and computing language that uses tensor

indices to express tensor operations. Programming sparse

RDAs using this notation means users only have to describe

the mathematical expression, along with sparse tensor data

structures. Performance engineers can then map the compu-

tation to an RDA using conventional performance engineer-

ing knowledge by deciding which computations should be

executed on the accelerator, data movement, and tiling for

locality. In order to enable this programming methodology,

we propose a compilation stack that compiles tensor index

notation along with a schedule and tensor data structure

descriptions to an RDA.

Prior work has made important strides toward this goal,

but an end-to-end compilation stack does not yet exist. Two

major approaches partially address compiling to sparse RDAs.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
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The Custard compiler in SAM [14] provides a compilation

framework from tensor index notation to a streaming dataflow

intermediate representation (IR). However, SAM is only an

abstraction and does not automatically lower to any con-

crete sparse RDA. The Spatial language is a domain-specific

language (DSL) based on parallel patterns (such as map and

reduce) with compilers [20, 41] that target the Capstan [26].

Spatial, however, still requires programmers to write com-

plex code, which includes detailed architectural knowledge

of Capstan and its intricate memory model. Thus, neither

approach is complete in compiling from raising the program-

ming abstraction of sparse RDAs. We build on the existing

system infrastructure of Capstan and provide the missing

step from high-level tensor index notation to Spatial code

running on the RDA and its host.

There are several challenges when compiling to RDAs:

managing different types of RDA memories, mapping com-

putation to different accelerator units (which are parallel

patterns in the case of Spatial), and controlling combinations

of sparse coordinate–value streams between those units. Im-

perative languages like C present the programmer with a

convenient pull memory model—when you need data, you

ask for it—as CPUs and GPUs separate control logic from

memories. In RDAs, however, programmers must explicitly

manage data movement through the memory hierarchy, as

the control logic is attached to memories in a push memory

model [4, 22, 24–26]. These challenges with RDAs are in-

evitable and arise as complexity in the Spatial programming

model. Spatial, specifically, has parallel patterns which may

look like imperative loops, but their programming abstrac-

tion is different. The patterns represent scanners, producing

variables in a fixed manner over time, rather than tempo-

rally modifying variables in place as in imperative code. This

way of representing scanners (and their parallelism in space)

severely limits what Spatial code is valid, and these program-

ming and compilation challenges are further exacerbated by

the inherent complexity in sparse kernels [19].

Therefore, we introduce Stardust, a compiler from tensor

index notation to an RDA (Capstan) through Spatial lan-

guage. Stardust users first control and schedule the data and

computation placement on a high-level abstract RDA, allow-

ing the compiler to infer lower-level architecture-specific

details. The compiler automatically handles fine-grained

data structure binding to different types of memories along

with explicit decoupled memory movement between those

memories. The compiler also manages transformations from

abstract loops to scanner functions in the parallel-pattern

output language. Our contributions are:

• a data representation language that can express accel-

erator tensor placement abstractly.

• an algorithm that binds data structures in abstract

memory to different physical memories on the RDA.

• a scheduling language that can express how portions

of a (potentially transformed) sparse tensor algebra

expression should be mapped to a sparse accelerator.

• a lowering rewrite system that maps sparse tensor

algebra expressions to a parallel-pattern language.

We use Stardust to compile a previously used benchmark

set [17] to the Capstan RDA [26]. Stardust produces code that

performs on average 0.65× that of the only hand-optimized

kernel from the benchmark (SpMV) written for Capstan by

its authors [26].We demonstrate the generality of Stardust by

generating nine new sparse algorithms in addition to SpMV.

These ten Capstan algorithms outperform CPUs by 138×
on average (geo-mean) and GPUs by 41× on average. The

speedups are of the same order of magnitude as in the orig-

inal Capstan work, which stem from its massively parallel

and pipelined design. These experiments show that Stardust

makes it feasible to rapidly develop sparse RDA kernels.

2 Background
Our work builds on two lines of prior work: sparse tensor

algebra compilation techniques for CPUs [6, 17, 27] and the

extended Spatial DSL [20] that targets the Capstan RDA [26].

2.1 Sparse Tensor Algebra Compilation
The TACO compiler separates the algorithm (tensor index

notation) from the tensor compression formats and computa-

tion transformations through the use of format [6] and sched-

uling [27] languages, respectively. It compiles sparse tensor

algebra to imperative code by decomposing sparse iteration

spaces into hierarchical set expressions of per-dimension

data structures. Sparse algorithms are expressed in CIN (see

Figure 1), which encodes iteration, computation, transfor-

mations, and temporary tensors [16]. Finally, TACO lowers

CIN to generate efficient fused code that traverses irregular

data structures by skipping unnecessary computation.

Scheduling. The sparse scheduling language proposed

by Senanayake et al. [27] provides a sparse iteration trans-

formation framework. The framework modifies the sparse

iteration space of an expression by taking its CIN statement

and transforming it into a new CIN statement that represents

a different algorithm for the same expression. The schedul-

ing transformation framework describes optimizations to

change the computation order, insert temporary tensors for

partial sub-computation, exploit parallelism, and more. See

Table 1 for a reference to one TACO scheduling command.

Format Language. The format language proposed by

Chou et al. [6] decomposes a sparse tensor into per-dimension

(or level) formats that each describes how to store the co-

ordinates of one dimension of a tensor. As an example, the

canonical compressed sparse row (CSR) compression format

(see Figure 8 for an example matrix) can be represented by an

uncompressed (dense) dimension followed by a compressed
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Index Variable 𝑖 Index Variable List 𝑖∗ Constants 𝑐 Tensors T
Accesses 𝑎 ::= T𝑖∗

Expressions 𝑒 ::= 𝑎 | 𝑐 | 𝑒 + 𝑒 | 𝑒 ∗ 𝑒 | . . .
Assignment 𝐴 ::= 𝑎 = 𝑒 | 𝑎 += 𝑒

Statements 𝑆 ::= ∀𝑖∗ 𝑆 | 𝐴 |
𝑆 ; 𝑆 | 𝑆 where 𝑆 | 𝑆 s.t. 𝑟∗

Scheduling Relation 𝑟 ::= split(𝑖, 𝑖𝑜 , 𝑖𝑖 , 𝑐 ) | fuse(𝑖𝑜 , 𝑖𝑖 , 𝑖𝑓 ) | . . .

Figure 1. Concrete index notation (CIN) syntax.

To Network

From Network

Ctr ScanMemory Controller (MC)

Pattern Memory
Unit (PMU)

Pattern Compute
Unit (PCU)

Shu�e Network

Figure 2. A high-level overview of the Capstan architecture,

showing the opportunities for high-level parallelism across

PCUs and vectorized parallelism within a PCU.

(sparse) dimension. After the tensors have been described

using level formats and scheduling transformations have

been applied to the CIN, TACO generates code that iterates

over the level formats of the expression.

2.2 Capstan and Spatial
RDAs improve performance and efficiency by removing over-

head found in CPUs and GPUs. RDAsmap programs in space,

meaning multiple data elements are processed in the same

clock cycle by pipelined and parallel compute units.

Capstan [26], shown in Figure 2, derives fromPlasticine [25]

with support for sparse operations. A notable Capstan con-

tribution is its ability to iterate over sparse tensors using

scanners and bitvectors, which is enabled by its microarchi-

tecture and apparent in its programming model. In order to

program Capstan, sparse iterations must be split into pattern

headers and pattern bodies, where headers determine which

(un)compressed iterations to run, and bodies use header iter-

ation information to load, compute, and store data.

Users program Capstan with Spatial [20]
1
. Compilers that

handle low-level optimizations and insertmemory-consistency

logic [20, 41] automatically lower Spatial to a streaming on-

chip dataflow graph and a cycle-accurate simulator.

Spatial uses a map-reduce abstraction. Each Foreach or
Reduce pattern is counter-indexed with an explicit paral-

lelization factor; multiple levels of nested loops can be in-

dependently parallelized to exploit different program-level

parallelism opportunities. Typically, the innermost loop is

vectorized, and the outermost loop is replicated across pat-

tern compute units (PCUs). Capstan provides sparse iterator

1
A full description of Spatial can be found at spatial-lang.org.

patterns—including union and intersection combinations—in

addition to dense ones. Sparse patterns iterate by running

on non-zero bit-vector elements using the index of the non-

zero element instead of a counter. These sparse patterns are

shown in Figure 9 and described later in Section 7.

Spatial has an explicit, decoupled, programmer-managed

memory hierarchy. In a CPU, memory is managed using

caches and demand misses; however, Spatial requires manu-

ally partitioning data into chunks that fit on-chip and control-

ling the corresponding data movement. Specifically, there are

four programmer-controlled memory types, ranging from far

to near: DRAM, SRAM, FIFOs, and registers, with the middle

two mapping to Capstan’s pattern memory units (PMUs).

3 Motivating Example
To illustrate the fundamental difference between compil-

ing sparse expressions to imperative C-like code versus a

parallel-patterns programming model, we introduce a com-

mon sparse linear algebra kernel in machine learning [9],

sampled dense-dense matrix multiplication (SDDMM), as a

running example. SDDMM produces a result by performing

a dense matrix multiplication sampled by a sparse mask. The

tensor index notation for SDDMM is 𝐴𝑖 𝑗 =
∑

𝑘 𝐵𝑖 𝑗𝐶𝑖𝑘𝐷𝑘 𝑗

where A and B are compressed sparse row (CSR) matrices.

However, index notation is declarative and does not specify

any low-level control flow.We can expand the index notation

expression with three loops to describe control flow (over a

scalar expression): ∀𝑖∀𝑗∀𝑘
(
𝐴𝑖 𝑗 += 𝐵𝑖 𝑗𝐶𝑖𝑘𝐷𝑘 𝑗

)
.

This notation is called concrete index notation (CIN) [16],

and we provide its syntax in Figure 1. Many compiler de-

cisions in prior work presuppose an imperative target lan-

guage. Figure 3 shows the C-like code generated from the

CIN statement by one suchcompiler [19]. The following

code locations in Figure 3 describe how prior work com-

piles this example to imperative code and shows why it is

more straightforward than compiling to parallel patterns: ➊
the ∀ nodes are exactly converted into for-loops (highlighted

in red), ➋ tensor elements are loaded/stored one element

at a time through indirect accesses that syntactically match

the index expression, ➌ tensor computation occurs only in

the innermost loop, and ➍ tensor accumulations may be

implemented as temporally-repeated variable modifications.

To target the parallel-patterns programming model of Spa-

tial, on the other hand, a compiler cannot depend on the

assumptions of an imperative programming model. For ex-

ample, the compiler to imperative code can load elements

where tensor accesses syntactically appear in the index ex-

pression, whereas most of the generated Spatial code in Fig-

ure 4 manages data movement. Specifically, Stardust must

address the following issues when compiling to Spatial code

as shown in Figure 4: ➎ the ∀ nodes are converted to dif-
ferent parallel patterns, which may include sparse patterns
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that scan through data without temporal counters, ➏ ten-

sor elements are transferred in chunks parallelized across

pipelines, ➐ tensor data must be retrieved whenever the

data arrives not just in the innermost loop (at line 32), and ➑
tensor computation (like accumulations) cannot temporally

modify variables so they are mapped to patterns (in this case

the Reduce pattern) that represent computation in space.

The lines highlighted in blue in Figure 4 show the code

complexity required to manage memories and data move-

ment in the Spatial programming model. The complexity

stems from the explicit, decoupled push data movement of

RDA accelerators. This memory management has two parts:

1. Explicit mapping of tensor arrays to different memory

types, such as FIFO, appearing on the right-hand-side

of the immutable variable val declarations.

2. Bulk data transfers between thesememory types, demon-

strated by the many load and store keywords.

The Spatial programming model represents an accelerator

memory hierarchy, where the different memory types have

different capacities, locality, access constraints, and prop-

erties. We do not expect a performance engineer who is

familiar with CPU code to write such memory management

code for three reasons: it is abstracted away on CPUs, it

requires intimate knowledge of the accelerator memory hi-

erarchy design and memory types, and it is tedious since

the memory management takes up a majority of the Spatial

program. Therefore, Stardust automatically generates this

memory management code for usability and productivity,

raising the programming abstraction of RDAs.

4 Overview
We implement Stardust as a new compilation path inside

the open-source TACO system [17] as shown in Figure 5,

where blue indicates our contributions. Like TACO, Stardust

takes as input tensor index notation, a format language [6],

and a scheduling language [27]. Stardust extends the format

language to describe whether tensor data is placed on the

accelerator and the scheduling language to describe how

(sub-)computation maps to compute units on the accelerator.

Stardust generates Spatial code [20], which is then compiled

using prior work [20, 41] to a cycle-accurate simulations of

the Capstan sparse RDA [26].

Tensor index notation lowers to concrete index notation
(CIN) [16], a loop-based IR where compressed tensor data

structures are abstracted away (shown in Figure 1). Sched-

uling language commands are applied as rewrites on CIN.

1 ➊for (i = 0; i < C1_dim; i++)
2 for (jB = B2_pos[i]; jB < B2_pos[i+1]; jB++) {
3 j = B2_crd[jB];➋
4 for (k = 0; k < D1_dim; k++)
5 ➌A[jB] ➍+= B[jB]*C[i,k]*D[k,j]; }

Figure 3. C implementation of SDDMM with CSR matrices,

generated by the TACO compiler.

Table 1 has one example of the original scheduling com-

mands in TACO, which we extend to target parallel patterns

in Section 7. A scheduling command may additionally add

metadata that is used during CIN lowering. Relation nodes

store this metadata by tracking the relationships between

CIN nodes, which are used to insert remapping code.

Stardust solves two key problems in compiling to sparse

accelerators: mapping tensors to memories and mapping

computation to the accelerator. Once mappings are decided,

by the user or compiler, Stardust generates Spatial code.

Users only need to provide coarse-grained tensor place-

ment information; Stardust automatically synthesizes the

rest of the data placement during code generation. Users

decide whether a tensor lives on or off the accelerator, with

a new memory location construct in the format language

(Section 5). During code generation, Stardust completes fine-

grained data placement via a memory analysis algorithm.

The memory analysis algorithm first determines the exact

placement of tensor data for every level of the memory dur-

ing compilation (Section 6). Stardust then generates the re-

quired data transfer code between memory types.

1 // Spatial header code ...
2 // Initialize all DRAM arrays as <name>_d
3 val A2_pos_d = DRAM[T](nnz_max)
4 ...
5 Accel {
6 val B2_pos = SRAM[T](nnz_accel_max)
7 B2_pos load B2_pos_d(0::(B1_dim + 1) par ip)
8 ➎Foreach (C1_dim by 1 par bp) { i =>
9 val A_vals = FIFO[T](16)
10 val A2_crd = FIFO[T](16)
11 val A2_pos = SRAM[T](nnz_accel_max)
12 val jB_start = B2_pos(i)
13 val jB_end = B2_pos((i + 1))
14 val jB_len = jB_end - jB_start
15 val B2_crd = FIFO[T](16)
16 B2_crd load B2_crd_d(jB_start::jB_end par 1)➏
17 val B_vals = FIFO[T](16)
18 B_vals load B_vals_d(jB_start::jB_end par 1)
19 Foreach (jB_len by 1 par 1) { jB =>
20 val j = B2_crd.deq
21 val B_hoisted = B_vals.deq➐
22

23 val D_vals = SRAM[T]((nnz_accel_max / 4))
24 D_vals load D_vals_d(j*D1_dim::(j+1)*D1_dim par ip)
25 val C_vals = SRAM[T]((nnz_accel_max / 4))
26 C_vals load C_vals_d(i*C2_dim::(i+1)*C2_dim par ip)
27

28 val tjA_vals = Reg[T](0.to[T])
29 ➑Reduce(tjA_vals)(D1_dim by 1 par ip) { k =>
30 ((B_hoisted * C_vals(k)) * D_vals(k))
31 } { _ + _ }
32 A_vals.enq(tjA_vals)
33 A2_crd.enq(j)
34 }
35 A2_pos(i + 1) = jB_end
36 A_vals_d stream_store_vec(jB_start, A_vals, jB_len)
37 }}

Figure 4. Spatial implementation of SDDMM with CSR

matrices. Lines highlighted in blue arememorymanagement.
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Map and environment scheduling relations

Concrete Index Notation (CIN) [16]

Spatial [20]

Capstan Dataflow Architecture [26]

Lowerer

SARA [41]

Memory Analysis (Section 6)

Co-iteration Rewrites (Section 8)

Parallel-Patterns (Section 8)

Stardust

Memory

Locations

(Section 5)

Format Language [6]

Tensor

Index

Notation

Map Com-

putation

Environments

(Section 7)

Scheduling Language [27]

Figure 5. Stardust overview. Blue denotes new contributions.

Once tensors are placed on the accelerator using the for-

mat language, users must also map the computation that uses

those tensors onto to the accelerator (Section 7). To target

specialized hardware, a user writes a schedule that reorga-

nizes the computation until a sub-computation is exposed.

The user then maps the exposed computation to a special-

ized hardware pattern. To simplify scheduling, Stardust also

provides a single shorthand command that combines both

the computation reorganization and mapping.

Finally, Stardust uses a term rewriting algorithm to recur-

sively compile the CIN to parallel patterns. The algorithm

recursively lowers to parallel patterns depending on the iter-

ation properties of the tensors in the expression (Section 8).

5 Mapping Data to Memories
One key difficulty in generating Spatial code is determining

how data should be stored in the sparse RDA. The abstract

memory model in this work allows users to reason about

RDA memory simply as a single level. Stardust raises the

memory-model abstraction by providing a description of

coarse-grained memory regions, which the user explicitly

manages via the format language by denoting a tensor’s

memory scope as either off-chip or on-chip. Then, the com-

piler infers fine-grained memory details about the on-chip

memories during compilation, as discussed in Section 6.

5.1 Abstract Memory Model in the Format Language
Stardust abstracts over multiple Spatial memories into two

memory regions: either off (shared with the host) or on the

accelerator. Users place tensors from an expression onto one

of these memory regions. This memory model is essential

because it affects how Stardust generates code and how users

interact with that generated code. Therefore, the memory

1 // Define off-chip (global) tensor formats
2 Format csr_off({dense, sparse.}, offChip);
3 Format rm_off({dense, dense}, offChip);
4 Format cm_off({dense, dense}, {1,0}, offChip);
5 // Declare input and output tensors
6 Tensor<int> A({N,N}, csr_off);
7 Tensor<int> B({N,N}, csr_off);
8 Tensor<int> C({N}, rm_off);
9 Tensor<int> D({N}, cm_off);
10

11 // Define SDDMM computation (algorithm).
12 IndexVar i, j, k;
13 A(i, j) = B(i, j) * C(i, k) * D(k, j);
14

15 // Scheduling language: Define environment variables
16 IndexStmt stmt = A.getAssignment();
17 stmt = stmt.environment(innerPar, 16);
18 stmt = stmt.environment(outerPar, 2);
19 // Precompute accumulation into a ws register
20 // to accelerate it using a Reduce pattern
21 Tensor<int> ws(onChip);
22 stmt = stmt.precompute(B(i,j)*C(i,k)*D(k,j),{},{}, ws);
23 stmt = stmt.accelerate(forall(k, ws+=B(i,j)*C(i,k)*
24 D(k,j)), Spatial, Reduction, innerPar);

Figure 6. Stardust input (user) code for SDDMM.

model of Stardust must not only differentiate between these

two regions, but also give users explicit control over them.

The format language of Stardust lets a user explicitly place

a tensor into a memory region of choice. The off-chip ten-

sors are globally accessible to all backends involved in the

computation (host and accelerators) whereas on-chip tensors

are only locally accessible to one accelerator backend. An

example of the format language for our SDDMM example

is shown in Figure 6 lines 2–4. Lines 6–9 in Figure 6 then

demonstrate how the format language is used to declare the

input and output tensors of an index notation expression.

5.2 Representing Data Movement in CIN
We give users control of on- to off-chip transfers because an

expression may have multiple transfer locations with differ-

ent performance characteristics [5, 14]. Since these decisions

impact end performance, it is better to separate that con-

cern from the Stardust compiler using schedules. Therefore,

Stardust’s new format language combines with the sched-

uling language such that users represent data movement in

CIN. Stardust expresses transfers between the host and the

accelerator within CIN as an assignment statement (𝐴 in

Figure 1). An assignment between a tensor annotated with

one memory region and another tensor in the other region

necessitates a transfer of data between them. The assignment

statement may have temporary tensors, which are tensor

workspaces that stores intermediate values.

A user inserts the memory-annotated temporary tensor

into CIN via the precompute scheduling command [16],

whose C++ declaration is in Table 1. The precompute com-

mand transforms a CIN statement with a sub-expression 𝑒

into a new CIN statement with a where sub-statement. A

632



CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Olukotun, and Fredrik Kjolstad

Table 1. The precompute command from the scheduling

language of the TACO work [16, 27]. 𝑒 [𝑥 ′/𝑥] denotes the
expression 𝑒 with each occurrence of 𝑥 replaced by 𝑥 ′.

Scheduling Commands Description

precompute(𝑒, 𝑖∗, 𝑖𝑤∗, T) Inserts a where statement to precom-

pute a sub-expression 𝑒 into a tempo-

rary tensor workspace T with new in-

dices 𝑖𝑤∗ on the right-hand side of the

newly introduced where node.

∀𝑖∗𝐴
precompute(𝑒,𝑖∗,𝑖𝑤∗,T)
−−−−−−−−−−−−−−−−→ ∀𝑖∗𝐴[T (𝑖∗)/𝑒 ] where

∀𝑖𝑤∗T(𝑖𝑤∗) = 𝑒 [𝑖𝑤 ∗ /𝑖∗]

∀𝑖∀𝑗 (∀𝑘 (𝐴𝑖 𝑗 += 𝐵𝑖 𝑗𝐶
on

𝑘
𝐷on

𝑘
) where ∀𝑘 (𝐶on

𝑘
= 𝐶𝑖𝑘 )

where ∀𝑘 (𝐷on

𝑘
= 𝐷𝑘 𝑗 ) )

19 stmt = stmt.precompute(C(i,k), {k}, {k}, C_on)
20 stmt = stmt.precompute(D(k,j), {k}, {k}, D_on)

(a) The rewritten CIN after partial on-chip loads of𝐶𝑟𝑜𝑤𝑠 and 𝐷𝑐𝑜𝑙𝑠 in the

𝑗-loop body using two precompute commands.

∀𝑖∀𝑗 ∀𝑘 (𝐴𝑖 𝑗 += 𝐵𝑖 𝑗𝐶
on

𝑖𝑘
𝐷on

𝑘 𝑗
) where ∀𝑖∀𝑘 (𝐶on

𝑖𝑘
= 𝐶𝑖𝑘 )

where ∀𝑗 ∀𝑘 (𝐷on

𝑘 𝑗
= 𝐷𝑘 𝑗 )

19 stmt = stmt.precompute(C(i,k), {i,k}, {i,k}, C_on)
20 stmt = stmt.precompute(D(k,j), {k,j}, {k,j}, D_on)

(b) The rewritten CIN after initial load of𝐶 and 𝐷 entirely before computa-

tion loops using two different precompute commands.

Figure 7. Two SDDMM CIN statements with corresponding

schedules demonstrating distinct memory transfer patterns.

Tensors 𝐴, 𝐵,𝐶on, 𝐷on
live on-chip and 𝐶, 𝐷 live off-chip.

where is a producer-consumer statement whose sides pro-

ducer and consumer sides both involve a temporary tensor

T . The producer side produces data from a sub-expression

𝑒 and stores it into T via an assignment statement. The

consumer side consumes data from T and uses that data to

compute the result of the where statement. The transformed

CIN, including its assignment statements embedded with

memory movement information, is different depending on

how the user applies the precompute schedules.

Consider the two SDDMM examples in Figure 7 with dis-

tinct precompute schedules. The examples demonstrate how

modifications in the precompute command and tensor format

results in different CIN statements. The two schedules differ

in their on-chip temporary tensor memory sizes—Figure 7a

uses two temporary vectors whereas Figure 7b uses two

temporary matrices. The two schedules also differ in which

indices load the tensor data—Figure 7a partially loads rows

of C into 𝐶𝑜𝑛
𝑘

and columns of D into 𝐷𝑜𝑛
𝑘

at the j-loop body,

whereas Figure 7b loads the entire C and D matrices into

𝐶𝑜𝑛
𝑖𝑘

and 𝐷𝑜𝑛
𝑘 𝑗

respectively in the innermost loop. CIN embeds

memory movement within its forall and access indices. Fi-

nally, our SDDMMexample in Figure 6 has yet another sched-

ule different from Figure 7, where off-chip data is loaded into

an on-chip scalar temporary (line 21).

6 Physical Memory Mapping
As Stardust generates Spatial code, it transforms the abstract

memory model into the physical memory model of Spatial

(an abstraction that is closer to Capstan’s physical memory

design). The physical memory model is a finer-grained hier-

archy representation, containing four memory types instead

of two. As in a standard memory hierarchy, the memory

types start with the largest capacity and farthest from the

accelerator compute units and end with the smallest capacity

closest to the accelerator compute units. The physical mem-

ory types are now fixed-length, which is not a requirement

in the abstract memory model.

At this compilation step, sparse tensors are represented as

compressed data structures made up of several arrays. These

arrays are divided into chunks that are placed in different

physical memories. The placement involves three decisions:

1. which memory type to place a chunk in (since different

memory types have different capabilities),

2. where allocate the memory in the code, and

3. where to transfer data between chunks in the code.

Stardust solves the placement problem through a two-step

memory analysis. The pass first performs a memory pinning

analysis to decide which memory type to place each chunk in

(Section 6.2), and then performs a memory lifetime analysis

to generate allocation and transfer code (Section 6.3).

6.1 Tensor Data Structures
The compiler takes whole tensors in abstract memory and

reasons about their constituent arrays. We refer to these as

sub-arrays and they encode the physical data structure of a

dense or compressed tensor. Stardust represents tensor data

structures as per-level formats [6]. A tensor has multiple

coordinate levels and a single value level [17, 30]. The value

level always consists of a values array that stores actual ten-

sor data. The specific coordinate level sub-arrays depend

on the level format. If the format is a compressed (sparse)

coordinate level, the level stores compressed coordinates in

two arrays: positions and coordinates. Position arrays are ad-

dressed in an 𝑎𝑑𝑑𝑟, 𝑎𝑑𝑑𝑟 + 1 fashion, while coordinate arrays
are addressed indirectly based on the obtained positions. If

the format is an uncompressed (dense) coordinate level, the

level stores only its dense dimension as a scalar sub-array. A

compressed tensor has one or more compressed levels.

The user provides format information to Stardust through

the format language. Consider the tensor array representa-

tion of 𝐵 in our running SDDMM example (illustrated in

Figure 8). 𝐵’s CSR data structure is shown in Figure 8b and

format language description and sub-arrays are in Figure 8c.

6.2 Memory Pinning Analysis
Stardust maps tensor sub-arrays based on both sub-array and

memory properties. To leverage locality, these memory types

have different capacities, transfer speeds, access patterns,
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0 1 3 4 5Row Positions

31 0 2 1Col Coordinates

1 2 3 4 5Values

Compressed Sparse Row (CSR)

0 1 0 0
2 0 3 0
0 4 0 0
0 0 0 5

Coordinates array B2_crd

Positions array B2_pos

Values array B_vals

Format Description 
{d1: compressed, d2: uncompressed}

B1_dimension

1
2
3
4
5
6
7
8
9
10
11

val B2_pos = SRAM[…]
B2_pos load …
Iterate (i …)
val B_crd = FIFO[…]
B2_crd load …
val B_val = FIFO[…]
B2_val load …
Iterate (j …)
val B_access = B_vals.deq
Iterate (k …) 
… = B_access …

(a) Sparse matrix 𝐵𝑖 𝑗 (b) 𝐵𝑖 𝑗 stored in CSR (c) 𝐵𝑖 𝑗 ’s format description (d) Pseudocode for iterating over 𝐵𝑖 𝑗

Figure 8. Example sparse 𝐵 matrix Figure 8a used in SDDMM with its corresponding data structure Figure 8b and format

arrays Figure 8c. Figure 8d shows pseudocode generated by Stardust, where the colors correspond with the arrays in Figure 8b.

scopes, lifetimes, and programming constructs. In Spatial,

the physical memory model is a memory hierarchy with

(sparse/dense) DRAM→ (sparse/dense) SRAM→ FIFO→
Register (from largest to smallest). The compiler binds sub-

arrays to these memories and generates data transfers.

Stardust analyzes the memory needs of CIN to generate

Spatial code. The algorithm recursively traverses the CIN.

When the compiler sees a tensor access, it extracts that ten-

sor’s level format to identify the level’s sub-arrays. Then,

based on the access pattern of the tensor access and the ca-

pabilities of each sub-array, Stardust pins it to a physical

memory type. Stardust starts with the sub-arrays pinned to

an initial memory type based on the abstract memory region

at the outermost access level. Then, as Stardust traverses

the CIN, it propagates the sub-arrays outward to adjacent

memory types in the hierarchy based on the following rules,

which Stardust applies from the most strict to least strict:

Dense DRAMs. The system pins arrays of every off-chip

tensor to dense DRAMs, which are initialized by the host.

Sparse DRAMs. These provide an interface for direct off-

chip random accesses of sparse data. They are read-only

DRAMwith custom compression to optimize reads of closely-

stored tiles. Stardust pins arrays to Sparse DRAMs when

there is no identifiable working set to bring on-chip.

Dense SRAMs. The system only binds arrays with affine

access patterns to dense SRAMs, including position arrays

(addressed linearly) and values arrays of fully dense formats

(which are generally traversed linearly).

Sparse SRAMs. These SRAMs include a reordering pipeline

that dynamically schedules SRAM requests to avoid con-

flicting banks. The reordering is necessary as sparse access

patterns are random, leading tomany bank conflicts. Stardust

pins any on-chip, small, fixed-size arrays that have an access

pattern with reuse but random accesses to sparse SRAMs.

Bit Vectors. Bit vectors are on-chip integer streams that

densely pack sparse coordinate information [3, 26]. Stardust

automatically generates and manages bit vectors when two

compressed tensor levels are being simultaneously traversed.

Spatial requires the conversion from sparse coordinates to

bit vectors for co-iteration, since the Capstan architecture

does not support coordinate stream intersections.

FIFO Buffers. Stardust may pin arrays accessed linearly

with certain access patterns to FIFO buffers. Code that uses

FIFOs cannot enqueue excess data that is not popped, and

must pop data precisely when the storage lifetime ends. This

restricts FIFOs to coordinate arrays of sparse tensors and

value arrays that are accessed in order.

Registers. On-chip scalar variables are bound to registers.

The above memory pinning analysis does not consider

array sizes, since it allocates the maximal possible size for

one unit of memory. It assumes arrays fit based on the tiling

to the accelerator as described by the scheduling language.

6.3 Memory Lifetime Analysis
Once the compiler has pinned a memory type to each array,

it inserts code to allocate that memory and to transfer data

to and from it. We can think of this data allocation and

movement as larger tensors being partitioned into smaller

chunks. The data from these smaller chunks are then copied

and transferred to more local levels of memory, which is

done automatically by Stardust. Stardust analyzes these two

steps through one algorithm that determines the scope and

lifetime of each sub-array.

Stardust ensures that sub-arrays are filled with elements

before their use by adhering to three scoping rules:

1. The algorithm accesses value-arrays at the correspond-

ing pattern body of the innermost tensor index.

2. Coordinate arrays are always accessed at the index

pattern body corresponding to that coordinate’s level.

3. Position arrays are always accessed one pattern higher

than their corresponding coordinate array (with the

highest array scope being the start of the kernel).

Our lowering algorithm must access value elements at

the pattern body of the innermost tensor index, not lower

in the pattern hierarchy. Stardust can not access array el-

ements arbitrarily after array declarations (in subsequent
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scopes) because this is not possible for memories that do

not support random access. Stardust addresses this scoping

property by accessing the element and storing it into a tem-

porary variable, which is used in place of the original value

at an inner sub-scope. Using a FIFO for an in-order traversal

of the levels, for example, requires that the FIFO values be

accessed precisely at the level of its tensor access index and

only used for one iteration of that loop. Figure 8d demon-

strates in blue that if the value array of 𝐵𝑖 𝑗 was bound to a

FIFO with the iteration pattern of the computation as ∀𝑖∀𝑗∀𝑘 ,
then B_vals array elements would have to be accessed in the

𝑗-loop (corresponding to 𝐵’s last mode) instead of the 𝑘-loop

(the innermost loop) as in imperative code. This hoisting

behavior is also clear in Figure 4 on line 23, with the hoisted

element used later in line 32.

Data Allocations. The algorithm allocates tensor arrays

within the pattern body just above the pattern with their

first use by default. Emitting allocations immediately above

where the variable is necessary allows for better compute

efficiency and for ease of analysis, however, hoisting the

memory allocations into outer patterns and inserting reset

code between iterations is also possible. Lines 1, 4, and 6 in

Figure 8d demonstrates this tensor memory allocation.

Data Transfers. As Stardust allocates arrays, it will also
emit the correct data transfer pattern between different mem-

ory types. The data transfer analysis actually determines

when array elements are used in the code. Since data trans-

fers must occur before array elements are needed, Stardust

will place transfer code immediately after their associated

allocations. Finally, Stardust generates data transfer code as

different load and store keywords in Spatial. A transfer from

a memory higher in the hierarchy to a lower one is a load;

the inverse is a store. Depending on the exact memory types

in the transfer, Stardust will emit a slightly different keyword

(e.g., store from SRAM → DRAM vs. store_stream_vec
for FIFO→ DRAM as in Figure 4 line 38).

Putting the analysis all together, consider the SDDMM

example in Figure 8 again. CIN describes the access 𝐵𝑖 𝑗 as

iteration over the index variables {i, j}, and the loops ∀𝑖∀𝑗 .

The innermost level of 𝐵 corresponds to the index variable 𝑗

and iterates B2_pos and B2_crd. This means the generated

Spatial code should access both B_val and B2_crd inside the
𝑗-pattern, so both arrays must be allocated right before in

the 𝑖-pattern body. The code accesses position arrays one

loop higher, meaning B2_pos is accessed in the 𝑖-loop and

is allocated at the top (before any iteration patterns occur).

The full algorithm can be found in Appendix B.

7 Mapping Computation to Hardware
Stardust approaches the mapping of computation similarly

to the memory mapping described in previous sections. The

abstract computation model in this work lets users reason

about Spatial parallel patterns as special accelerator func-

tions. Through the scheduling language, users control the

mapping of sub-computations to certain parallel patterns,

when there is ambiguity in which one generate, for accelera-

tion. During lowering, Stardust compiles the entire compu-

tation, including these accelerated sub-computation regions,

to parallel patterns as described in Section 8.

Stardust models optimized computation on an accelera-

tor backend as a function of that backend. The computa-

tion model allows users to pass in arguments, or metadata,

to these backend functions through environment variables.

Additionally, Stardust does not assume that these backend

functions are necessarily parallel patterns. This computation

model is general enough to represent hardware modules

(units), accelerator kernels or function, parallel patterns, or

accelerator instructions as backend functions in Stardust.

Users leverage Stardust schedules to reshape CIN sub-

statements to expose sub-computations that can be mapped

to high-level accelerated primitives, which in this case are

the Spatial parallel patterns. Given any CIN statement 𝑆 that

includes a sub-statement 𝑆 ′, where 𝑆 ′ has an equivalent in-

struction 𝑓 for a given platform, the scheduling language can

transform 𝑆 such that the sub-statement 𝑆 ′ is isolated. Then,
the sub-statement 𝑆 ′ can be replaced and computed using the

specialized pattern or function 𝑓 for a given backend instead

of being lowered directly to code. Since using the scheduling

language to do all of this CIN reshaping and mapping may

become tedious, we also provide a wrapper command for

productivity that will also accelerate the computation.

Concretely, consider the simple vector-vector multiplica-

tion statement (∀𝑖𝑎𝑖 = 𝑏𝑖𝑐𝑖 ) where the vectors start out off-
chip. Assuming there exists an optimized multiplier 𝑓mul(out,

in1, in2) for a given backend, the goal is to map the statement

to that function 𝑓mul. However, the vectors involved in the

multiplication start off-chip, so the schedule must move all

vectors on-chip first before mapping 𝑓mul. We apply the fol-

lowing scheduling transforms to move the vectors on-chip

and call the backend function.

The map command can be used in conjunction with the

precompute command to optimize the kernel. The transfor-

mation is demonstrated by the following equations. Given

the scheduling command

𝑐1
def
= precompute(𝑏𝑖 ∗ 𝑐𝑖 , {𝑖}, {𝑖}, 𝑎on),

(∀𝑖𝑎𝑖 = 𝑏𝑖 ∗ 𝑐𝑖 )
𝑐1−→

( ∀𝑖𝑎𝑖 = 𝑎on
𝑖

where ∀𝑖𝑎on𝑖 = 𝑏𝑖𝑐𝑖

)
transforms the vector multiplication to store into an on-chip

result 𝑎on. 𝑎on is subsequently stored back off-chip into 𝑎.

Then, each off-chip input tensor needs a precompute on-

chip so that the vector-vector multiplication is computed

using only on-chip inputs. Given the command 𝑐2
def
= ∀𝑡 ∈

{𝑏, 𝑐} precompute(𝑡𝑖 , {𝑖}, {𝑖}, 𝑡on), the transformation is
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( ∀𝑖𝑎𝑖 = 𝑎on
𝑖

where ∀𝑖𝑎on𝑖 = 𝑏𝑖𝑐𝑖

)
𝑐2−→

©­­«
∀𝑖𝑎𝑖 = 𝑎on

𝑖

where ∀𝑖𝑎on𝑖 = 𝑏on
𝑖
𝑐on
𝑖

where ∀𝑖𝑏on𝑖 = 𝑏𝑖

where ∀𝑖𝑐on𝑖 = 𝑐𝑖

ª®®¬ ,
where 𝑡on denotes an on-chip tensor format and 𝑡 denotes

an off-chip format for all 𝑡 ∈ tensors(𝑒).
Lastly, the vector-vector multiplication sub-expression

maps to the vectorized multiplier 𝑓mul using only on-chip ten-

sors as operands 𝑓mul (𝑎on, 𝑏on, 𝑐on). Given 𝑐3
def
= map(∀𝑖𝑎on𝑖 =

𝑏on𝑖 ∗ 𝑐on𝑖 , backend, 𝑓mul), the transformation is

©­­«
∀𝑖𝑎𝑖 = 𝑎on

𝑖

where ∀𝑖𝑎on𝑖 = 𝑏on
𝑖
𝑐on
𝑖

where ∀𝑖𝑏on𝑖 = 𝑏𝑖

where ∀𝑖𝑐on𝑖 = 𝑐𝑖

ª®®¬
𝑐3−→

©­­­«
∀𝑖𝑎𝑖 = 𝑎on

𝑖

where 𝑓
mul

(𝑎on, 𝑏on, 𝑐on )
s.t. map(backend, 𝑓

mul
)

where ∀𝑖𝑏on𝑖 = 𝑏𝑖

where ∀𝑖𝑐on𝑖 = 𝑐𝑖

ª®®®¬ .
We also introduce a new accelerate scheduling com-

mand that composes all of these steps. accelerate is a com-

pound command consisting of one or more precompute com-

mands and a map command, and is necessary to map any

sub-statement to a new backend function. Intuitively, the

accelerate command first precomputes all off-chip tensors

on-chip for a sub-statement that is being accelerated and then

maps the on-chip tensors to the backend function 𝑓 for sub-

stituted computation. Given that 𝑆
def
= ∀𝑖∗𝑎 = 𝑒 , we define the

accelerate transformation below. 𝑆
accelerate(𝑆 ′,backend,𝑓 ,𝑐 )
−−−−−−−−−−−−−−−−−−−→

𝑆new is equivalent to 𝑆
𝑐′
1
𝑐′
2
𝑐′
3−−−−−→ 𝑆𝑛𝑒𝑤, where the 𝑐

′
1
, 𝑐′

2
, and 𝑐′

3

commands are defined as variadic versions of the 𝑐1, 𝑐2, and

𝑐3 commands respectively. Specifically,

𝑐′
1

def
= precompute(𝑒, 𝑖∗, 𝑖∗, 𝑎on)

𝑐′
2

def
= For all 𝑡 ∈ tensors(𝑒) precompute(𝑡𝑖 , 𝑖∗, 𝑖∗, 𝑡on)

𝑐′
3

def
= map(𝑆 ′ [𝑡on/𝑡 for all 𝑡 ∈ tensors(𝑆 ′)], backend, 𝑓 , 𝑐).

Finally, Stardust must pass accelerator and function meta-

data to the global scope of the generated code. Therefore, we

introduce an environment command to set these metadata

variables to values. Allowing environments in the sched-

uling language enables users to search the design space of

kernels parameterized by these metadata values. We leverage

leverage this command in Section 9 to sweep our evaluated

kernels for performance and improved resource utilization.

Our SDDMM example in Figure 6 shows the acceleration

of reductions into registers in lines 21–23 and the config-

uration of parallelization factors in lines 17–18. Some of

scheduling commands to target accelerators from Stardust

can be found in Table 1 and Table 2.

8 Compilation
Sparse accelerators speed up sparse tensor computations

by contracting together and iterating through tensor ele-

ments efficiently, and a good compiler must support these

Table 2. New scheduling commands necessary in Stardust

for targeting accelerators.

Scheduling Commands Description

map(𝑆, backend, 𝑓 , 𝑐 ) : Maps a CIN statement 𝑆 to a backend-specific

computation strategy (specialized block, func-

tion, pattern, or instruction) 𝑓 with some op-

tional constant factor, 𝑐 .

𝑆
map(𝑆,backend,𝑓 ,𝑐 )
−−−−−−−−−−−−−→ 𝑓 (tensors(𝑆 ),𝑉 †, 𝑐 ) s.t. map(backend, 𝑓 )

†
Where𝑉 is the set of variables {𝑖∗, 𝑟∗, var∗} defined by the scope

of the CIN sub-tree right before the statement 𝑆 .

accelerate
(𝑆, backend, 𝑓 , 𝑐 )

: A compound scheduling command that accel-

erates a sub-statement 𝑆 by precomputing all

tensors of 𝑆 into on-chip tensors for a new ex-

pression 𝑆 ′ and then maps 𝑓 onto 𝑆 ′ .

environment(var, 𝑐 ) : Sets a global hardware configuration variable

to some value, 𝑐 .

𝑆
environment(var,𝑐 )
−−−−−−−−−−−−−→ 𝑆 s.t. var = 𝑐

1 // Pattern Format: <Header> {<Indices> => <Body>}
2 // Uncompressed iteration and reduction
3 Foreach(len by inc par p) {i_dense => ...}
4 Reduce(reg)(len by inc par p) {i_dense => ...}
5 MemReduce(mem par mp)(len by inc par p) {i_dense => ...}
6 // Compressed single iteration (Reduce not shown)
7 Foreach(len by inc par p) {pos => ...}
8 Foreach(Scan(par=p, len=l, bitvector_A.deq))
9 {A, i_crd => ...}
10 // Compressed-compressed coiteration (Reduce not shown)
11 Foreach(Scan(par=p, len=l, bitvector_A.deq,
12 bitvector_b.deq)) {A, B, out, i_crd => ...}

Figure 9. Spatial parallel patterns for compressed and un-

compressed iterations of an index. The parallel-pattern

header and body with indices is shown.

algorithms natively. Stardust compiles these efficient sparse

iterations to Spatial through a novel co-iteration rewrite

system. The co-iteration is interleaved with the memory

lowering in Section 8 to generate the final parallel-pattern

code for Spatial as follows.

Environment variables set by the schedule are emitted

first to be globally scoped. Next, Stardust recurses over CIN

and replaces map-scheduled statements with their backend

functions (see Figure 4 line 31 for an example of the generated

Reduce function). Stardust then automatically lowers the

remaining ∀ nodes to the correct parallel patterns depending

on the rewrite system. For each ∀ node, the rewrite rules are

applied to each tensor access that has that ∀ index.

Stardust uses the rewrite system shown in Table 3, for

matching fused (sparse) iteration constructs to parallel pat-

terns. The lowering mechanism recurses over the CIN and

applies the rewrite rules for every CIN ∀ node. The iteration

for each forall with index 𝑖 , involves a single level of all ten-

sors that have 𝑖 in their tensor access. The rewrite system

decomposes the iteration’s fused tensor contraction set. The
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contraction set is rewritten into smaller tensor iterator con-

traction subsets based on the iterator formats for that level

and the contraction type (intersection or union). The rewrite

rules that decompose the contraction set stem from the type

of iterations parallel patterns that Spatial supports (see Fig-

ure 9). The rewrite system uses set algebra to isolate binary

iteration patterns of: dense iteration, single compressed ten-

sor iteration, or compressed-compressed co-iteration. Then,

it lowers to the correct parallel pattern.

Formally, the rewrite system has a set of iterator con-

tractions 𝐼 for a given ∀ node is 𝐼 = T1 ◦ T2 ◦ · · · ◦ T𝑛 s.t.
where the contraction ◦ ∈ {∪,∩} and 𝑛 ≥ 1,. The for-

mat of an iterator contraction set is defined as format(𝐼 ) =
format(T1) ◦ format(T2) ◦ . . . ◦ format(T𝑛). The format of a

tensor format(T𝑛) is defined as C𝑛 for a compressed level, B𝑛

for a bit vector level, and U the universe of coordinates for a

dense level. Stardust applies the rewrite rules in Table 3 to 𝐼

for every index. Lets look at the example of adding another

matrix to SDDMM to demonstrate the rewrite system. The

CIN for this computaiton is defined as∀𝑖∀𝑗∀𝑘𝐵𝑖 𝑗𝐶𝑖𝑘∗𝐷𝑘 𝑗+𝐸𝑖 𝑗
where both 𝐸 and 𝐵 are CSR. The iterator contraction of

level 𝑗 is 𝐼 = 𝐸2 ∪ (𝐵2 ∩ 𝐷2). The format of 𝐼 is 𝑓 𝑜𝑟𝑚𝑎𝑡 (𝐼 ) =
C𝐸2

∪ (C𝐵2
∩ U). lowerIter is called on format of 𝐼 , which

will first call lowerIter[C𝐵2
∩ U] ⇒ lowerIter[C𝐵2

∩ U]
and call lowerIter on the result of that

Special care is takenwhen Stardust generates the bit vector

scanner parallel pattern (denoted by the lowerIter[B1 ◦
B2] rule). Two compressed bit vectors are either logically

AND-ed for intersection or OR-ed for union by the sparse

bit-vector Scan patterns. As the scanner processes the bit-

vector data, it generates the following pattern indices: the

position of 𝐴, position of 𝐵, the output position 𝑜𝑢𝑡 , and the

output coordinate 𝑖_𝑐𝑟𝑑 . For each bit-vector iteration level,

Stardust actually emits two scanner patterns: one to calculate

the position sub-array entries by counting the number of

nonzero results and the other to compute entries for the

value sub-array. After the compiler emits the values scanner,

it will traverse through the computation and use atomic

accesses to sparse SRAMs for any value-array computation.

The compiler at this point generates the codewithin parallel-

pattern bodies. The compiler lowers pattern bodies as: pat-

tern indices that contain the iteration space of that pattern,

memory allocations and data transfers as determined by

Section 6, any other index calculations, and computation.

9 Evaluation
We demonstrate that Stardust compiled Spatial provides in-

creased programmability, while still being comparable in

performance to handwritten code. Stardust also enables the

generation of many useful sparse kernels for Capstan, in-

creasing the number of Capstan kernels by over 2× from

the original work. For these newly generated kernels, we

Table 3. General rewrite system that lowers tensor itera-

tion contractions from forall nodes to parallel-patterns. Blue

statements emit code and comp. stands for compressed.

lowerIter[format(𝐼 )] ⇒ emit <backend block behavior>

Si
ng

le
-I
te
ra
ti
on

lowerIter[U] ⇒ emit Foreach or Reduce(...=> i...)

lowerIter[B1] ⇒ emit scanner for result positions
emit Foreach(...=> pos...))

lowerIter[C1 and ⇒ emit B1 = genBitvector(T1)
T1 is result] lowerIter(B1)

lowerIter[C1] ⇒ emit Foreach(...=> pos...))

U
ni
ve

rs
e lowerIter[U ∪ _ ] ⇒ lowerIter(U)

lowerIter[ _ ∪ U] ⇒ lowerIter(U)

lowerIter[U ∩ U] ⇒ lowerIter(U)

C
om

p. lowerIter[C1 ∩ U] ⇒ lowerIter(C1)
lowerIter[U ∩ C2] ⇒ lowerIter(C2)

C
o-
It
er
at
io
n

lowerIter[C1 ◦ C2] ⇒ emit B1 = genBitvector(T1)
emit B2 = genBitvector(T2)
lowerIter(B1 ◦ B2)

lowerIter[B1 ◦ B2] ⇒ emit scanner for result positions
◦ = ∪ ⇒ emit Foreach(Scan(...or...)
◦ = ∩ ⇒ emit Foreach(Scan(...and...))

B
as
e

lowerIter[ _ ] ⇒ format(T
1𝑘 ) = lowerIter(T1 ◦ . . . ◦ T𝑘 ),

largest 𝑘 ≤ 𝑛 that produces a match

lowerIter(format(T
1𝑘 ◦ ... ◦ T𝑛 ))

Table 4. The expressions used to evaluate Stardust. Sparse

tensors are bolded.

Lines of Code

Name Expression Input Spatial

SpMV 𝑦𝑖 =
∑

𝑗 A𝑖 𝑗𝑥 𝑗 10 44

Plus3 𝐴𝑖 𝑗 = B𝑖 𝑗 + C𝑖 𝑗 + D𝑖 𝑗 8 91

SDDMM A𝑖 𝑗 =
∑

𝑘 B𝑖 𝑗𝐶𝑖𝑘𝐷 𝑗𝑘 17 62

Mat𝑇Mul 𝑦𝑖 =
∑

𝑗 𝛼A𝑇
𝑗𝑖
𝑥 𝑗 + 𝛽𝑧𝑖 13 50

Residual 𝑦𝑖 = 𝑏𝑖 −
∑

𝑗 A𝑖 𝑗𝑥 𝑗 9 48

TTV A𝑖 𝑗 =
∑

𝑘 B𝑖 𝑗𝑘𝑐𝑘 13 73

TTM A𝑖 𝑗𝑘 =
∑
𝑙 B𝑖 𝑗𝑙𝐶𝑘𝑙 11 83

MTTKRP A𝑖 𝑗 =
∑

𝑘𝑙 B𝑖𝑘𝑙𝐶 𝑗𝑘𝐷 𝑗𝑙 15 86

InnerProd 𝛼 =
∑

𝑖 𝑗𝑘 B𝑖 𝑗𝑘C𝑖 𝑗𝑘 11 115

Plus2 A𝑖 𝑗𝑘 = B𝑖 𝑗𝑘 + C𝑖 𝑗𝑘 6 163

also show significant performance improvements when us-

ing Stardust to target an RDA over compiling to a CPU or

GPU. our evaluation increases the usability of Capstan (from

the perspective of performance engineer programmability

and algorithm expressibility), while providing the end-user

performance improvements of an accelerator.

9.1 Methodology
We evaluate Stardust on a benchmark set that is completely

new for Capstan. The benchmarks are sparse tensor algebra

expressions listed in Table 4 from the literature [14, 17] with

Stardust user schedules shown in Table 5. We profile CPU

baselines on a 128-thread, four-socket Xeon E7-8890 v3 with
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Table 5. User-provided schedules for the kernels in Table 4.

Scalar promotion (sPromote) inserts a scalar workspace as
a macro-scheduling command (instead of lines 21-22 in Fig-

ure 6) and communicate determines at which iteration pat-

tern the result is communicated back off-chip [35]. Parallel
is short for parallelize [27] and env is short for environment.

Name Schedule

SpMV stmt.parallel(j, Reduction, 16).sPromote().env("bp", 2)

Plus3 stmt.precompute(C(i,j)*D(i,j), {i, j}, {i, j}, ws)

SDDMM See Figure 4 .

Mat𝑇Mul stmt.parallel(j, Reduction, 16).sPromote().env("bp", 2)

Residual stmt.parallel(j, Reduction, 16).sPromote().env("bp", 2)

TTV stmt.accelerate(l, Reduction, 16).sPromote()

.communicate(A(i,j), j)

TTM stmt.accelerate(l, Reduction, 16).sPromote()

.communicate(A(i,j,k), j)

MTTKRP stmt.parallel(l, Reduction).parallel(k, Reduction)

.parallel(j, Reduction).sPromote().communicate(A, j)

InnerProd
stmt.parallel(l, Reduction, 16).parallel(k, Reduction, 16)

.parallel(j, Reduction, 16).sPromote()

.communicate(A(i,j), j).env("bp", 2)

Plus2 stmt (default schedule)

Table 6. Capstan resources required by our compiled kernels.

The specific limiting resource(s) are shown in bold type.

PCU PMU MC Shuf

Par # % # % # % # %

SpMV 16 44 (22 %) 41 (21 %) 35 (44 %) 16 (100%)

Plus3 8 55 (28 %) 100 (50 %) 58 (73%) 8 (50 %)

SDDMM 12 163 (82%) 90 (45 %) 61 (76%) 0 (0 %)

Mat𝑇Mul 16 47 (24 %) 66 (33 %) 36 (45 %) 16 (100%)

Residual 16 43 (22 %) 65 (33 %) 36 (45 %) 16 (100%)

TTV 16 93 (47 %) 91 (46 %) 67 (84%) 16 (100%)

TTM 12 161 (81%) 89 (45 %) 70 (88%) 0 (0 %)

MTTKRP 8 140 (70%) 70 (35 %) 58 (73%) 0 (0 %)

InnerProd 8 53 (27 %) 155 (78%) 80 (100%) 0 (0 %)

Plus2 1 10 (5 %) 23 (12 %) 14 (18 %) 2 (13 %)

a 32 KiB L1 data cache, 32 KiB L1 instruction cache, 256 KiB

L2 cache, 46 080 KiB L3 cache, and 1024GiB RAM. The ma-

chine runs Ubuntu 18.04.3 LTS and is clocked at 2494MHz.

We compile TACO using GCC 7.4.0 with OpenMP enabled

for the CPU baseline and NVCC version 10.0.0 for the GPU

baseline. The GPU baselines run on an AWS EC2 p3.2xlarge

instance with an NVIDIA V100 SXM-2 GPU. The GPU con-

tains 64 KiB registers and 12KiB L0 instruction cache per

block, 128 KiB L1 data cache and sharedmemory and 2KiB L1

constant cache per streaming multiprocessor, and 6144 KiB

L2 cache. The device RAM is 16 160MiB. The GPU has 84

Volta SMs and is clocked at up to 1328MHz. We exclude data

transfer time between the host and the GPU.We benchmark a

single iteration with a cold cache. We evaluate Capstan appli-

cations with the same cycle-accurate simulator as in [26, 39],

using an ideal memory model or Ramulator [15] to model

four channels of DDR4-2133 or HBM-2E (at 1800 GB/s).
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Figure 10. Impact of memory bandwidth on performance.

All evaluations use the datasets shown in Table 8 in the

Appendix. For most 2D kernels, we use the same SuiteS-

parse matrices demonstrated in the original Capstan paper

for a fair comparison between Stardust generated and hand-

written Capstan kernels [26]. However, Capstan’s original

architectural design does not perform well for highly sparse

(less than about 5%) tensors. Therefore, we also generate syn-

thetic datasets for Plus3, InnerProd, and Plus2 as described

in detail in Appendix A.

We use CSR formats for all sparse 2D matrices and com-

pressed sparse column (CSC) for Mat
𝑇
Mul. For 3D tensors,

we use a CSR-like format for InnerProd and Plus2 and com-

pressed sparse fiber (CSF) otherwise. We use the above for-

mats for all platforms except the GPU baseline result tensors,

which are fully dense since the TACO codebase [18] does

not support sparse results for their GPU backend.

9.2 Resource Consumption
To understand which resources limit the performance of Star-

dust generated Spatial code, we provide some details about

Capstan’s design. Capstan is built as a grid of 200 vectorized

compute units (PCUs) and 200 memory units (PMUs) with

a surrounding ring of 80 memory controllers (MCs). Each

PCU has six pipeline stages and 16 vector lanes that perform

operations. Each PMU has 16 banks, supporting one read

and write per bank per cycle. Capstan also has 16 shuffle

networks (Shuf) that enable sparse accesses beyond the PMU,

but they limit outer-level parallelism to 16.

To make good use of Capstan’s hardware, a compiler

must extract parallelism at both an inner-loop (vectorization)

and outer-loop (cross-PCU) level. Outer-loop parallelism is

harder to extract because it requires the compiler to explicitly

manage distributed memories across physically unrolled par-

titions. Based on Capstan’s distributed nature, it is unlikely

that an application could use 100% of all on-chip resources.

Limiting resources vary, but all applications except Plus2

make good use of resources via outer parallelization because

they approach a limit in at least one resource dimension. By

hitting physical resource limits, the compiler ensures that

users can take full advantage of Capstan.

One key factor in RDA (and GPU) out-performance is a

high-bandwidth memory system. Figure 10 shows that our

applications (except Plus2, which is not outer-parallelized)

638



CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Olukotun, and Fredrik Kjolstad

Table 7. Normalized runtimes (geomean of all datasets) to the compiled Capstan (HBM-2E) platform. We compile to Capstan,

while CPU and GPU code is generated by TACO. Only SpMV, highlighted in gray, has handwritten kernels.

Matrix Kernels Tensor Kernels

Platform (Memory) Compiled SpMV Plus3 SDDMM Mat𝑇Mul Residual TTV TTM MTTKRP InnerProd Plus2 gmean

Capstan (HBM2E) No 0.65 — — — — — — — — — 0.65

Capstan (Ideal Net & Mem) Yes 0.77 0.24 0.78 0.75 0.75 0.49 0.57 0.44 0.35 0.42 0.52

Capstan (HBM2E) Yes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Capstan (DDR4) Yes 12.13 10.07 8.33 12.31 12.06 4.92 9.80 7.76 3.28 1.72 7.09

Plasticine (HBM2E) No 8.72 — — — — — — — — — 8.72

V100 GPU Yes 3.15 41.89 18,259.50 3.59 3.54 232.85 284.47 6.77 2.76 381.38 41.31

128-Thread CPU Yes 27.90 236.40 220.28 376.52 384.08 335.99 8.47 398.72 178.34 59.22 138.07

are able to make good use of DRAM bandwidth as well. Spa-

tial’s decoupled access-execute memory model lets Stardust

factor out off-chip memory accesses into large, bulk transfers

that expose significant memory parallelism.

9.3 Case Study: Sparse Matrix-Vector Multiplication
Sparse matrix-vector multiplication (SpMV) is the only ap-

plication where a handwritten Spatial implementation exists.

The first column of Table 7 provides a comparison of SpMV

across all platforms. The Capstan and Plasticine rows from

Table 7 are handwritten Spatial SpMV kernels from [25, 26],

respectively. All Capstan and Plasticine rows in Table 7 that

are not compiled (where the Compiled column is No) are

handwritten Spatial SpMV kernels.

SpMV is simpler, making it easy to parallelize. Therefore,

SpMV applications compiled by Stardust have a speedup

relative baselines that is lower than other applications. How-

ever, the version of SpMV run in the original Capstan paper

(Capstan, uncompiled) is more optimized than the compiled

version (Capstan, compiled) because the code generated by

Stardust uses the shuffle network (shown by SpMV×Shuf
in Table 6) to coordinate parallel accesses to the input vec-

tor and the handwritten Capstan SpMV does not. Instead,

the handwritten Capstan SpMV duplicates the input vector,

which avoids shuffle-network contention and permits outer-

parallelization beyond the shuffle network’s limit of 16. We

expect that these additional optimizations can be automated

in the future, but for now they demonstrate that a dedicated

hardware expert can get better performance compared to

Stardust, albeit at the cost of significant development effort.

To demonstrate that Stardust both increases programmer

productivity and decreases development effort in targeting

Capstan, we compare the lines of code (LOC) of the hand-

written Spatial SpMV kernel against the Stardust kernel for

Capstan. The compiled SpMV kernel uses 10 input LOC

total—a 76% decrease from the 52 lines of Spatial required

for the handwritten version. Moreover, we believe that the

input code to Stardust is simpler to write and to port to new

architectures. The code required for Stardust includes: 3 LOC

for the tensor formats, 2 LOC for the algorithm, 4 LOC for

the scheduling transformations, and 1 LOC to compile and

output our kernel. With the use of an auto-scheduler, which

we leave as future work, the LOC could be cut down from 10

to 6 by removing the user-provided scheduling code. These

numbers support the use of our compiler as a programmer

productivity tool that enables the rapid development of new

sparse tensor kernels for an RDA accelerator.

9.4 Tensor Algebra Expression Performance
Performance results for all platforms and applications are

shown in Table 7. Stardust compiled applications are, on

average, 138× faster than CPU baselines, and 41× faster than

GPU variants. These performance benefits further motivate

using RDAs—and thus a compiler to target RDAs.

Our TACO GPU baseline performance is significantly

worse than both the literature [27] and compiled Capstan be-

cause TACO does not natively support sparse tensor outputs

on the master branch of the system code base [18]. Most of

the time is spent zero initializing the fully dense result tensor

in device memory—which is often extremely large—on the

host. Because Capstan is designed to outperform the GPU for

sparse applications, it may seem counter-intuitive that the

GPU speedup for MTTKRP is relatively low. However, these

kernels have a dense dimension that the GPU can vectorize.

Currently, a comparison between compiled and handwrit-

ten implementations beyond SpMV is not possible since these

kernels do not exist. The handwritten applications take con-

siderable time to implement by an expert in Spatial, SARA,

Capstan, and the domain of sparse applications. Our system

is able to compile to 9 new applications, motivating the use

of Stardust to generate new sparse tensor algebra kernels.

10 Related Work
Stardust is, to the best of our knowledge, the first software

stack to enable end-to-end compilation from tensor index

notation to the architectural simulation of a reconfigurable

sparse accelerator. There is, however, prior work on sparse

tensor algebra systems targeting von Neumann architectures,

domain-specific architectures that provide alternative targets

for a compiler like ours, and different methodologies for

programming these sparse DSAs.
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Sparse Tensor Algebra Compilers for von Neumann
architectures. Several compilers have been proposed for

sparse tensor algebra, but these compilers target CPUs [1, 2,

13, 17, 21, 32, 37], GPUs [27, 37], and distributed machines

of CPUs and GPUs [36] whereas our system compiles to

domain-specific sparse dataflow hardware. Like many prior

work compilers, we use an input API that follows a sepa-

ration of concerns and start from an abstract loop-based

IR. Stardust is unique, however, because it emits code with

sparse iteration on bit vectors, memory management, and

parallel patterns in the Spatial programming model.

Sparse Domain-SpecificHardware. Many fixed-function

accelerators have been proposed for sparse kernels [10, 11,

23, 28, 29, 31, 38, 40, 42], however, we will focus our discus-

sion on reconfigurable sparse accelerators as they need for

compilation. Our system targets Capstan [26] because it is

a flexible RDA with an easy-to-understand programming

model: it supports sparse iteration with composable parallel

patterns. However, sparse iteration spaces are a general rep-

resentation, and the ideas from Stardust could influence the

software stack of any reconfigurable sparse accelerator. The

SPU [7] and ExTensor [12] are two recent sparse DSAs with a

different programming model than Capstan. Both are tiled ar-

chitectures with explicit on-chip memory accesses, but they

have different methods for combining sparse data. The SPU

uses a stream-join programming abstraction in C code to

combine sparse indices and a custom RDA fabric to perform

the intersection operations. Similarly, ExTensor uses a pro-

gramming model based on hierarchical tensor intersectors

that are programmed through hardware configurations.

Programming Sparse DataflowArchitectures. The Spa-
tial compiler [20] and the idiomatic spatial accelerator com-

piler of Weng et al. [34] show how to compile high-level

control-flow languages to sparse RDAs and CGRAs. The

Custard compiler [14], on the other hand, shows how to

compile sparse tensor algebra to an abstract machine rep-

resenting reconfigurable streaming dataflow accelerators.

The Mosaic compiler shows how to isolate a sparse tensor

algebra sub-expression and to call out to a user-defined ex-

ternal function on that sub-expression. Our work is the first

of these compilers to identify and compile a tensor index

notation sub-expression all the way to an RDA.

11 Conclusion
We described the first compiler that enables the end-to-end

compilation of sparse tensor algebra from tensor index no-

tation to a sparse reconfigurable dataflow accelerator. We

expect Stardust to be the first of many compilers from high-

level sparse languages to target these sparse accelerators. We

expect its design—of giving users abstract control of mem-

ory and computation and having the compiler complete the

Table 8. The datasets used to evaluate Stardust.

App Name Dimensions Density

Sp
M
V

SD
D
M
M

M
at
..
.M

ul
R
es
id
ua

l

bcsstk30 [8] 28924 × 28924 2.48 × 10
−3

ckt11752_dc_1 [8] 49702 × 49702 1.35 × 10
−4

Trefethen_20000 [8] 20000 × 20000 1.39 × 10
−3

Pl
us

3 random 800 × 800 1.00 × 10
−2

random 800 × 800 10.00 × 10
−2

random 800 × 800 50.00 × 10
−2

T
TV

,T
TM

M
T
TK

R
P facebook [33] 1591 × 63891 × 63890 1.14 × 10

−7

In
ne

rP
ro
d

Pl
us

2 random 200 × 200 × 200 1.00 × 10
−2

random 200 × 200 × 200 10.00 × 10
−2

random 200 × 200 × 200 50.00 × 10
−2

remaining accelerator mapping information—will influence

future compiler designs for domain-specific accelerators.
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A Evaluation Datasets
Below is a description of the datasets used to evaluate Star-

dust in Section 9. As mentioned, we use the same SuiteS-

parse matrices demonstrated in the original Capstan paper

for most 2D kernels to maintain a fair comparison between

Stardust-generated and handwritten Capstan kernels [26].

SuiteSparse only contains matrices and cannot be used for

higher-order kernels. Therefore, we use the real-world Face-

book [33] tensor for most 3D kernels as in prior work [17].

The highly sparse nature (>99%) of these datasets makes

themunideal for Capstan’s original bitvector design as bitvec-

tors still have to iterate over a dense iteration space divided

by a constant factor (the bitvector size) [26]. Therefore, we

use uniformly randomly generated data with higher densi-

ties, as in the original Capstan work, for Plus3, InnerProd,

and Plus2. These expressions are prone to slowdowns on

high-sparsity data since they perform higher-order compu-

tation and/or have multiple sparse operands. For Plus3, we

generate the other operands by rotating the input matrix’s

columns right by one and two [14]. For Plus2 and InnerProd,
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Algorithm 1 Memory Insertion Algorithm

// An iteration graph (IterationGraph) denotes which index variable (IndexVar) paths (Path) are taken for the CIN expression [17]

procedure Forall::LowerWithMemInsert(CinNode N, Tensors T, IterationGraph G) ⊲ Forall Node

Var indexvar = N.getIndexVar()

// Iterators (Iterator) determine how to iterate through the forall loop based on a combination of the tensor level formats at that index variable

Iterator iterator = N.getIterator()

if iterator is a dense (dimension) or single sparse (position) iteration then
for all Tensor tensor in T do

Path path = G.getPaths(tensor)

// The distance of an index variable from a tensor’s path denotes how many levels away from an access index variable it is

if indexvar in path && distance(indexvar, path) == 1 && tensor.getFormat(indexvar) == Sparse then
MemType posMem = GetMemoryType(ArrayType::pos, tensor, indexvar) ⊲ Memory type based on case conditions from Section 6.2

Emit(initialize tensor_pos to posMem)

Emit(tensor_pos load from tensor.getPrevMemType())

tensor.setPrevMemType(ArrayType::pos, posMem)

else if indexvar in path && distance(indexvar, path) == 0 && tensor.getFormat(indexvar) == Sparse then
MemType crdMem = GetMemoryType(ArrayType::crd, tensor, indexvar)

Emit(initialization of tensor_crd to crdMem)

Emit(tensor_crd load from tensor.getPrevMemType(ArrayType::crd, crdMem))

tensor.setPrevMemType(ArrayType::crd, crdMem)

// We are at the innermost access index variable of a tensor if the index variable is at the last position in that tensor’s path

if path.at(-1) == indexvar then
MemType valMem = GetMemoryType(ArrayType::val, tensor, indexvar)

Emit(initialize tensor_val to valMem)

Emit(tensor_val load from tensor.getPrevMemType(ArrType::val))

tensor.setPrevMemType(ArrayType::val, valMem)

Emit(Parallel pattern to iterate node based on IndexVar indexvar and Iterator iter)) ⊲ Emit parallel pattern

CinNode forallBody = N.getChild()

for all Tensor tensor in T do
Path path = G.getPaths(tensor)

// Hoist out tensors as tensor values must be read at the same level of their innermost access indexvar

if indexvar in path && distance(indexvar, path) == 0 && path.at(-1) == indexvar then
Emit(tensor_hoisted = read of tensor_vals)

forallBody = forallBody[tensor_hoisted/tensor_val]

else if iter is sparse coiteration then
// Generate FIFO read from appropriate memory location

for all Tensor tensor in T do
generateFifosFromMem(tensor)

// Generate bitvectors from FIFOs

generateIteratorBitvectors(N, indexvar, iter) ⊲ Function that follows rewrite rules from Section 8

Emit(Scan across bitvectors using iteration algebra and rewrite system in Section 8 ) ⊲ Emit parallel pattern

// Proceed normally by emitting loop-body code

LowerWithMemInsert(forallBody)

we generate the additional operand by rotating the even

coordinates of the last tensor dimension by one.

B Full Memory Analysis Algorithm
We present the memory analysis algorithm as described

in Section 6 below in Algorithm 1. The method Lower-

WithMemInsert is called recursively on the concrete index

notation (CIN) abstract syntax tree (AST) during Stardust

code generation. Algorithm 1 only shows the LowerWith-

MemInsert function definition for a ∀ node since all other

nodes behave similarly to the Lower function as in prior

work [6, 16, 17, 19, 27] with some automatic inference ex-

tensions on memory types during the creation of temporary

tensors and variables based on the GetMemoryType func-

tion. The algorithm shown also omits memory allocation

and transfers (stores) of the result tensor since the analysis is

similar as input tensor loading but occurs after the innermost

CIN forall body code has been generated. We provide more

details associated with the memory analysis for compressed

(sparse) level format arrays since they are more complex

to reason about, but a simpler analysis occurs with uncom-

pressed (dense) level formats that only needs to emit code

for a scalar array containing the dense dimension.
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