
Tensor Algebra Compilation with Workspaces
Fredrik Kjolstad

MIT, USA
fred@csail.mit.edu

Peter Ahrens
MIT, USA

pahrens@csail.mit.edu

Shoaib Kamil
Adobe Research, USA

kamil@adobe.com

Saman Amarasinghe
MIT, USA

saman@csail.mit.edu

Abstract—This paper shows how to extend sparse tensor alge-
bra compilers to introduce temporary tensors called workspaces
to avoid inefficient sparse data structures accesses. We develop
an intermediate representation (IR) for tensor operations called
concrete index notation that specifies when sub-computations
occur and where they are stored. We then describe the workspace
transformation in this IR, how to programmatically invoke it, and
how the IR is compiled to sparse code. Finally, we show how the
transformation can be used to optimize sparse tensor kernels,
including sparse matrix multiplication, sparse tensor addition,
and the matricized tensor times Khatri-Rao product (MTTKRP).

Our results show that the workspace transformation brings
the performance of these kernels on par with hand-optimized
implementations. For example, we improve the performance
of MTTKRP with dense output by up to 35%, and enable
generating sparse matrix multiplication and MTTKRP with
sparse output, neither of which were supported by prior tensor
algebra compilers.

Index Terms—sparse tensor algebra, concrete index notation,
code optimization, temporaries, workspaces

I. INTRODUCTION

Temporary scalar variables are important for optimizing
loops that iterate over dense multi-dimensional arrays and
sparse compressed data structures that represent tensors. Vari-
ables are cheap to access because they do not require address
calculations, can be stored in registers, and can also be used
to precompute loop-invariant expressions. Temporaries can
also be higher-dimensional tensors that we call workspaces.
Workspaces of low dimensionality (e.g., a vector) are cheaper
to access than tensors of higher dimensionality due to simpler
address calculation and better locality. This makes them
profitable in loops that repeatedly access a tensor slice, and
they can also be used to precompute loop-invariant higher-
dimensional tensor expressions.

Workspaces provide additional opportunities for optimizing
loops that compute on sparse tensors. Sparse tensors contain
mostly zeros and are therefore stored in compressed irregular
data structures. Dense workspaces can drastically reduce access
and insertion cost when they substitute compressed tensors
due to asymptotically faster random access and insertion. (The
time complexity of random access into a compressed tensor
is O(log n) from search and the insertion complexity is O(n)
from data movement.) Furthermore, simultaneous iteration over
compressed data structures, common in sparse tensor codes,
requires merge loops with many conditionals. By introducing
dense tensor workspaces of low dimensionality to keep memory
costs minimal, we can reduce the cost of insertion and replace
merge loops with random accesses.

Prior work on sparse tensor compilation describes how to
optimize sparse imperative code [1]–[3] and how to generate
sparse code from high-level tensor index notation [4], [5]. It
does not, however, consider optimizations that introduce tempo-
rary tensors. These are important in many sparse tensor kernels,
such as tensor additions, sparse matrix multiplication (where all
matrices are sparse) [6], and the matricized tensor times Khatri-
Rao product (MTTKRP) used to factorize sparse tensors [7].
Without compiler support for workspaces we leave performance
on the table. In fact, the sparse matrix multiplication kernel is
asymptotically slower without workspaces [6].

This paper presents a compiler transformation that introduces
temporary tensor workspaces into sparse code generated from
tensor index notation by our prior work, taco [4]. This
workspace transformation is expressed in a new intermediate
representation (IR) called concrete index notation, which
precisely describes when computations occur and where results
are stored. The workspace transformation is programmatically
invoked through a scheduling API, giving users control of
when to apply it. We outline heuristics for invoking the
transformation, but leave as future work a policy system to
determine full schedules for sparse tensor algebra expressions.
This policy system can be built on top of our scheduling API.

Our contributions are:

Concrete Index Notation We introduce a new tensor algebra
IR that specifies loop order and temporary variables
(Section IV).

Workspace Transformation We describe a tensor algebra
compiler transformation that can be used to remove
expensive inserts into sparse tensors, eliminate merge
code, and hoist loop invariant code (Section V).

Compilation We build on our prior work [4] to compile
concrete index notation to sparse code (Section VI).

Case Studies We show how the transformation recreates
sparse matrix multiplication, sparse matrix addition, and
MTTKRP algorithms from the literature, while generaliz-
ing to new kernels.

We evaluate these contributions by demonstrating performance
improvements from the use of workspaces, by observing that
some kernels obtain asymptotic performance improvements,
and by showing that the performance of resulting sparse code
is competitive with hand-optimized implementations in the
Intel MKL [8], Eigen [9], and SPLATT [7] high-performance
libraries, including speedups of 4× over Eigen and 1.28× over
MKL for sparse matrix multiplication.

978-1-7281-1436-1/19/$31.00 c© 2019 IEEE CGO 2019, Washington, DC, USA
Research Papers

180

a b
c

d e f
B

10 2 3

1
0

2

(a) Dense m× o matrix B

a b c d e fB

1 3 2 0 1 2B_crd

0 2 3 6B_pos

(b) Sparse CSR index of B

 1 memset(A, 0, A1_size * A2_size * sizeof(float));
 2 for (int i = 0; i < m; i++) {
 3 for (int pB = B_pos[i]; pB < B_pos[i+1]; pB++) {
 4 int k = B_crd[pB];
 5 for (int pC = C_pos[k]; pC < C_pos[k+1]; pC++) {
 6 int j = C_crd[pC];
 7 A[i*n+j] += B[pB] * C[pC];
 8 }
 9 }
10 }

(c) Aij =
∑

k BikCkj (sparse B, C)

 1 memset(row, 0, row_size * sizeof(float));
 2 for (int i = 0; i < m; i++) {
 3 for (int pB = B_pos[i]; pB < B_pos[i+1]; pB++) {
 4 int k = B_crd[pB];
 5 for (int pC = C_pos[k]; pC < C_pos[k+1]; pC++) {
 6 int jp = C_crd[pC];
 7 row[jp] += B[pB] * C[pC];
 8 }
 9 }
10
11 for (int pA = A_pos[i]; pA < A_pos[i+1]; pA++) {
12 int jc = A_crd[pA];
13 A[pA] = row[jc];
14 row[jc] = 0.0;
15 }
16 }

(d) Aij =
∑

k BikCkj (sparse A, B, C)

Fig. 1: Figure (a) shows a sparse matrix B and (b) its compressed data structure. Figure (c) shows the code for a sparse matrix
multiplication with a dense result and (d) with a sparse result. Sparse matrices do not support O(1) insert so (d) uses a dense
row workspace. The index data structures of the result matrix A have been pre-assembled and all memory pre-allocated.

II. SPARSE MATRIX MULTIPLICATION EXAMPLE

We use matrix multiplication to introduce compressed
data structures, sparse code and workspaces. These concepts,
however, generalize to higher-dimensional tensor code. Matrix
multiplication in index notation is

Aij =
∑
k

BikCkj .

Sparse kernel code also depends on the tensor storage
formats. Many formats exist and can be classified as dense
formats (which store every component) or sparse/compressed
formats (which store only nonzeros). Figure 1 shows two sparse
matrix multiplication kernels: (c) with a dense result and (d)
with a compressed sparse row (CSR) result matrix.

The CSR format and its column-major CSC sibling are
ubiquitous in sparse linear algebra libraries due to their
generality and performance [8]–[10]. In the CSR format, each
matrix row is compressed (only nonzeros are stored). This
requires two index arrays to describe the coordinates and
positions of the nonzeros. Figure 1a shows a sparse matrix
B and Figure 1b its CSR data structure. It consists of two
index arrays B pos and B crd and a value array B. The array
B crd contains the column coordinates of the nonzero values
in corresponding positions in B. The array B pos stores the
position in B crd of the first column coordinate of each row,
with a sentinel storing the number of nonzeros (nnz) in the
matrix. Thus, contiguous values in B pos store the beginning
and end [inclusive-exclusive) of a row in the arrays B crd
and B. For example, the column coordinates of the third row
are stored in B crd at positions [B pos[2], B pos[3]). Finally,
many libraries store the coordinates of each row in sorted order
to improve the performance of some algorithms.

In Figure 1, both kernels multiply matrices using the linear
combination of rows algorithm that computes a row of A as a
sum of rows from C scaled by a row from B. When the matrices
are sparse, the linear combinations of rows matrix multiply is
preferable to inner products matrix multiply (where one result
component is computed at a time) for two reasons. First, the

sparse linear combinations are asymptotically faster because
inner products must simultaneously iterate over row/column
pairs and consider values that are nonzero in only one matrix [6].
Second, linear combinations of rows works on row-major
matrices (CSR), while inner products require the second matrix
to be column-major (CSC). It is often more convenient, as a
practical matter, to keep matrices ordered the same way.

The matrix multiplication kernel in Figure 1c has two sparse
CSR operand matrices but a dense result. Because it contains
the subexpression Bik it iterates over B’s sparse matrix data
structure with the loops over i (line 2) and k (lines 3–4). The
loop over i is dense because the CSR format stores every row,
while the loop over k is sparse because each row is compressed.
To iterate over the column coordinates of the ith row, the k
loop iterates over [B pos[i], B pos[i+1]) in B crd.

The kernel in Figure 1d has a sparse CSR result to save
memory when many of the values are zeros. The sparse result
matrix complicates the kernel because the assignment on line 7
is nested inside the reduction loop k. This causes the inner loop
j to iterate over and insert into each row of A several times.
Sparse data structures, however, do not support fast random
inserts (only appends). Inserting into the middle of a CSR
matrix costs O(nnz) because the new value must be inserted
into the middle of an array. To get the O(1) insertion cost of
dense formats, the kernel introduces a dense row workspace.

A workspace is a temporary tensor that is typically dense to
get fast insertion and random access, with lower dimensionality
than the result to keep down memory usage. Because values
can be scattered efficiently into a dense workspace, the loop
nest k, j (lines 3–9) in Figure 1d looks similar to the kernel
in Figure 1c. Instead of storing values into the result matrix A,
however, it stores them in a dense workspace vector. When
a row of the result is fully computed in the workspace, it is
appended to A in a second loop over j (lines 11–15). This
loop iterates over the row in A’s sparse index structure and
thus assumes A’s CSR index has been pre-assembled. Pre-
assembling indices, common in simulation codes, increases
performance when assembly can be moved out of inner loops,

181

 1 // Create three square CSR matrices
 2 Type mat(Float,{N,N});
 3 Format CSR({Dense, Compressed});
 4 TensorVar A(mat,CSR), B(mat,CSR), C(mat,CSR);
 5
 6 // Compute a sparse matrix multiplication
 7 IndexVar i, j, k;
 8 IndexExpr mul = B(i, k) * C(k, j);
 9 IndexStmt matmul = (A(i, j) = sum(k, mul));
10
11 // Reorder to linear combinations of rows
12 matmul.reorder(k, j);
13
14 // Precompute the mul expression into a row workspace
15 IndexVar jc, jp;
16 Type vec(Float,{N});
17 TensorVar row(vec, Format({dense}));
18 matmul.precompute(mul, {{j,jc,jp}}, row);

Fig. 2: C++ code that constructs a matrix multiplication and
transforms it with reorder and precompute scheduling com-
mands into a linear combination of rows matrix multiplication
with a dense workspace shown in Figure 1d.

but it is also possible to simultaneously assemble and compute.
Section VI describes code that assembles result indices by
tracking the nonzero coordinates inserted into the workspace.

III. PRECOMPUTE SCHEDULING

We propose a scheduling extension to taco [4] in the spirit of
Halide [11] to support programmatically reordering loops and
precomputing subexpressions into workspaces. The reorder and
precompute scheduling methods invoke the workspace transfor-
mation (Section V) and reorder transformation (Section IV-B).
The C++ declaration of precompute is:
void
IndexStmt ::precompute(IndexExpr expr,

vector<tuple<IndexVar,IndexVar,IndexVar>> vars,
TensorVar workspace);

We apply the precompute method to the index notation state-
ment and provide as arguments the expression to precompute,
the index variables to precompute over, and the workspace in
which to store precomputed results. The expr argument is an
index expression contained in the index statement on which
we call precompute. The vars argument is a vector of index
variable triplets of the form (old, consumer, producer). The
old index variable is the variable we wish to precompute over
and is split into the consumer and producer index variables.
The producer variable is used to iterate over the statement that
calculates the workspace, and the consumer variable is used to
iterate over the statement that uses the workspace. Finally, the
workspace argument is a tensor for storing the precomputed
results and its order and dimensions must be large enough to
contain all temporary values.

Figure 2 shows a C++ example that uses the reorder and
precompute methods to transform an index notation statement
so that it can be lowered to the code in Figure 1d. Lines
2–4 create three square CSR matrices with single precision
floating point components, A, B and C. Lines 7–9 create a
matrix multiplication expression using the taco index notation
API. The initial order of the loops is ijk (free index variables
first as described in Section VI), forming an inner product

matrix multiplication algorithm. The matrices are stored in the
CSR row-major matrix format, however, so the ijk loop order
with the Ckj access causes the C matrix to be accessed in the
column-major direction. Column-major access of a row-major
sparse matrix is asymptotically inefficient. Line 12 therefore
reorders k and j, making the access to C row-major and
forming an ikj linear combination of rows matrix multiplication
algorithm. The reorder introduces a new inefficiency. Since the
j index variable used in Aij is now inside the k summation
index variable, the code will scatter values into A. The format
of A is, however, row-major CSR which does not support
efficient random insert. Lines 15–18 therefore precomputes
and scatters the results into a dense row workspace that is then
copied to A.

Dense workspaces are useful because they support O(1)
random access and insert. A workspace, however, can be
any format including compressed and hash maps [5], [12].
Hash maps are particularly interesting, since they also support
O(1) random access and insert without the need to store all
the zeros. Furthermore, the component type of a workspace
can be different than the operand and result tensors, making
mixed precision algorithms available in taco. For example, the
row workspace in Figure 2 can be constructed with double
precision floating point components to accumulate values in
higher precision.

IV. CONCRETE INDEX NOTATION

Index notation is a popular input language for tensor algebra
code generators and frameworks [4], [13], [14]. It describes
what tensor operations should do, independently of how they
are computed and how tensors are accessed. Thus, optimization
decisions are not mixed with algorithmic descriptions.

While index notation is a suitable input language for tensor
operations, it is unsuitable as a compiler IR. The reason is that
it does not specify the order of execution or temporary tensors
and their formats. Several existing representations could be
used to fully describe how an index expression is computed,
such as the low-level C code that implements the index
expression, sparse extensions of the polyhedral model [15],
[16], or iteration graphs [4]. These representations, however,
are too unconstrained to conveniently apply the workspace
transformations described in this paper.

We propose a new intermediate language for tensor opera-
tions called concrete index notation. Concrete index notation
extends index notation with constructs that describe the
order of loops, where to use temporaries and the formats
of temporaries, without the details of how to coiterate over
sparse data structures. In the compiler software stack, concrete
index notation is an intermediate representation between index
notation and low level imperative IR (see Figure 6). A benefit
of this design is that we can transform concrete index notation
instead of transforming sparse imperative code with indirect
accesses, conditionals and while loops. The sparse imperative
code is then generated when lowering concrete index notation.

182

statement := assignment
forall
where
sequence

assignment := access = expr
access += expr . . .

forall := ∀index statement
where := statement where statement

sequence := statement ; statement

access := tensorindices
indices := index∗

expr := literal
access
(expr)
expr + expr
expr expr
. . .

Fig. 3: The grammar of concrete index notation. The construct
∀i...k can be used as shorthand for ∀i . . . ∀k and we show only
some of the incrementing assignments and binary expressions.

A. Statements

Concrete index notation has four statement types shown
in Figure 3. The assignment statement assigns the result of an
expression to a tensor component, the forall statement executes
a statement over a range inferred from tensor dimensions, the
where statement creates temporaries that store subexpressions,
and the sequence statement reuses temporaries.

To describe concrete index notation, we return to the linear
combinations of rows matrix multiplication example. We
express the algorithm with forall loops in ikj order. Concrete
index notation is on the left and corresponding loop nest
pseudocode appears in gray on the right:

∀ikj Aij += BikCkj

A = 0
for i ∈ I
for k ∈ K
for j ∈ J
Aij += Bik ∗ Ckj

An assignment statement modifies the value of a single
tensor component. It can either be a regular assignment (=)
or an incrementing assignment (e.g., += but other operators
are also allowed). In the matrix multiplication example, the
incrementing assignment statement Aij += BikCkj modifies
the value of the tensor component Aij . The statement is
restricted so that the tensor on the left hand side may not
appear on the right hand side of the expression and each tensor
is accessed using only index variables. Finally, result tensors
are implicitly initialized to zero.

A forall statement expresses iteration by binding an index
variable to a set of values. Nesting of forall statements
describes the order index variables are iterated in. In the matrix
multiplication example, the three forall statements ∀i∀k∀j ,
abbreviated as ∀ikj , specify iteration order.

A where statement precomputes an expression into a
temporary tensor variable. The matrix multiplication algorithm
repeatedly computes and adds scaled rows to the matrix A.
If A is stored in a segmented compressed data structure it is
expensive to insert into rows, and we can use a where statement
to accumulate into a dense workspace:

∀i
(
∀j Aij =wj

)
where(

∀kj wj += BikCkj

)
for i ∈ I
w=0
for k ∈ K
for j ∈ J
wj += Bik ∗ Ckj

for j ∈ J
Aij =wj

The where statement introduces a dense temporary vector w to
hold the partial sums of rows on the right-hand producer side,
which is then copied to A on the left-hand consumer side.

A sequence statement allows tensor updates. Suppose we
wish to add a sparse CSR matrix D to our multiplied matrices
B and C. This operation (A = D+BC) is best accomplished
by reusing our dense temporary vector w. We use the sequence
(;) statement to denote result update:

∀i
(
∀j Aij =wj

)
where((

∀j wj =Dij

)
;(

∀kj wj += BikCkj

))

for i ∈ I
w=0
for j ∈ J
wj =Dij

for k ∈ K
for j ∈ J
wj += Bik ∗ Ckj

for j ∈ J
Aij =wj

Unlike a where statement, tensors defined on the left-hand side
of a sequence statement can be modified on the right-hand
side. They can therefore be used to express a sequence of
tensor writes.

B. Reorder Transformation

Reordering concrete index notation statements is useful for
several reasons. First, sparse tensors are sensitive to the order in
which they are accessed. For example, iterating over rows of a
CSC matrix is costly so we can reorder forall statements to yield
better access patterns. We may also wish to reorder to move
loop-invariant where statements out of inner loops. Critically,
we may need to reorder statements so that the preconditions
for our workspace transformation apply. When we reorder
a concrete index statement, we want to know that it will
do the same thing as it used to. We can ensure semantic
equivalence by breaking larger reorder operations down into
smaller equivalences. In all cases, we require that all the
statements being reordered do not contain sequence statements.

Exchanging forall statements requires the associative prop-
erty. If S is a statement which modifies its tensor with
an assignment statement or an increment statement with an
associative operator, then ∀i ∀j S and ∀j ∀i S are semantically
equivalent.

Moving a forall into the consumer side of a where statement
is similar to loop invariant code motion. If S2 does not use the
index variable j, then (∀j S1)where S2 and ∀j (S1 where S2)
are semantically equivalent.

Moving a forall into both sides of a where statement
changes the reuse distance of the data. If the statement
S2 modifies its tensor with an assignment statement, then
(∀j S1)where (∀j S2) and ∀j (S1 where S2) are semantically
equivalent.

We can rearrange nested where statements when all con-
sumers do not use all of the producers’s tensors. If S1 does not
use the tensor modified by S3, then (S1 where S2)where S3,
and S1 where (S2 where S3) are semantically equivalent. If
S2 does not use the tensor modified by S3 and S3 does not
use the tensor modified by S2, then (S1 where S2)where S3,
and (S1 where S3)where S2 are semantically equivalent.

183

V. WORKSPACE TRANSFORMATION

The workspace transformation precomputes tensor algebra
subexpressions in a temporary workspace with the concrete
index notation where statement. It can be used to optimize
sparse tensor algebra kernels in the following ways:
Simplify merges Code to simultaneously iterate over sparse

tensors contains expensive conditionals and loops. It can
be simplified by precomputing subexpressions into dense
workspaces (e.g., Figure 4).

Avoid expensive inserts Repeated accumulation into the mid-
dle of a sparse tensor is expensive. We can improve
performance by adding results to a workspace with fast
inserts, such as a dense array (e.g., Figure 1).

Hoist loop invariant code Computing everything in the inner-
most loop can result in redundant computation. Pre-
computing a subexpression in a separate loop and storing
the results in a workspace can hoist parts of an inner loop
(e.g., Figure 9).

The transformation rewrites concrete index notation to extract
a subexpression and compute it separately, storing the results in
a temporary tensor (the workspace). The subexpression can then
be replaced by the temporary tensor in the main expression.
Surrounding forall statements are pushed down into either
the subexpression or the main expression to avoid redundant
computation. The effect is that the original statement is split
in two; one statement produces values for the other through
the workspace. We can think of the workspace transformation
as the multidimensional generalization of loop-invariant code
motion, where we use temporary tensors instead of scalars to
store loop-invariant values.

A. Algorithm

Let (S,E, I, w) be the inputs to the workspace transforma-
tion, where S is a statement of the form ∀JAK ⊕= E ⊗ F
that does not contain sequences, I , J , and K are sets of
index variables, and w is a workspace tensor. Let S′ be the
statement AK ⊕= E⊗F in S. The transformation is requested
and arguments are given through the precompute scheduling
method shown in Section III. The workspace transformation
then rewrites the statement to precompute E in a workspace
as follows:

Let w be a fresh tensor variable.
Replace S′ with (AK ⊕= wI)where (wI ⊕= E).
for j in J , from innermost to outermost ∀ do

Note that S′ is of the form S′
C where S′

P .
if j is used in both S′

C and S′
P and j ∈ I then

Replace ∀jS′ with (∀jS′
C)where (∀jS′

P)
else if j is used only in S′

C then
Replace ∀jS′ with (∀jS′

C)where S′
P

else if j is used only in S′
P then

Replace ∀jS′ with S′
C where (∀jS′

P)
else

Error.
end if

end for

The transformation can be applied to any binary operators ⊗
and ⊕ as long as neither has side effects and ⊗ distributes over
⊕. In order to apply the transformation, we may need to first
rearrange the statement to match the form ∀JAK ⊕= E ⊗ F .
Note that if we have an operator �(x, y) = x, then we can
use this operator to transform the expressions AK ⊕= E and
AK =E to the required form. After executing the algorithm
we can remove � to simplify the resulting statements. We can
also transform AK ⊕= wI to AK =wI when K contains I ,
meaning that we only increment each element of A once.

Depending on the forall statements containing S, the
requested transformation may not be possible. The user needs
to first reorder to remove forall statements over index variables
that are unused in S′ or index variables that are used in both S′

P

and S′
C but not included in I . Alternatively, the user can add

index variables to I , provided the dimensionality of resulting
workspace w is the number of index variables in I and the
dimension sizes are equal to the ranges of those index variables.

We show the workspace transformation is correct by ex-
amining each statement replacement. The first replacement
(splitting the statement) is a scalar statement transformation
to an equivalent form. The for loop contains the next three
replacements. In the case where we move a forall statement
into both S′

C and S′
P , we have checked that j ∈ I and so this

transformation moves from using the values of wI immediately
after assignment to using them after the j loop. The case where
we move forall statements into the S′

C is equivalent to loop
invariant code motion, and the case where we move a forall
statement into S′

P is valid since ⊗ must distribute over ⊕.
Figure 4 shows the code before and after applying the

workspace transformation to Bij over j in a statement that
computes the inner products of rows from two matrices. In
this example the transformation replaces the while loop over
j, which simultaneously iterates over the two rows, with a for
loop that independently iterates over each row. The for loops
have fewer conditionals, at the cost of reduced data locality.
Note that sparse code generation is handled below the concrete
index notation in the compiler stack, as described in Section VI.

B. Result Reuse Optimization

When applying a workspace transformation it may pay to
reuse result tensors instead of introducing a new workspace.
To support reuse, we use the sequence statement, which allows
us to define a result and compute it in stages. Result reuse
is useful in sparse vector addition with a dense result, as the
partial results can be efficiently accumulated into the result:

∀i ai = bi + ci =⇒
(
∀i ai = bi ; ∀i ai += ci

)
.

That is, b is first assigned to a, and then c is added.
The workspace transformation can reuse the result as a

workspace if the forall statements on both sides of the resulting
sequence statement are the same; that is, the transformation
does not hoist computation out of a loop. This precondition
ensures that results do not get overwritten by their use as a
workspace. For example, this precondition is not satisfied by the
second transformation to the MTTKRP kernel in Section VII.

184

 1 for (int i = 0; i < m; i++) {
 2 a[i] = 0;
 3 int pB2 = B2_pos[i];
 4 int pC2 = C2_pos[i];
 5 while (pB2 < B2_pos[i+1] && pC2 < C2_pos[i+1]) {
 6 int jB = B2_crd[pB2];
 7 int jC = C2_crd[pC2];
 8 int j = min(jB, jC);
 9 if (jB == j && jC == j) {
10 a[i] += B[pB2] * C[pC2];
11 }
12 if (jB == j) pB2++;
13 if (jC == j) pC2++;
14 }
15 }

(a) Before: ∀ij ai += BijCij

 1 for (int i = 0; i < m; i++) {
 2 a[i] = 0;
 3 memset(w, 0, w1_size * sizeof(double));
 4
 5 for (int pB2 = B2_pos[i]; pB2 < B2_pos[i+1]; pB2++) {
 6 int j = B2_crd[pB2];
 7 w[j] = B[pB2];
 8 }
 9
10 for (int pC2 = C2_pos[i]; pC2 < C2_pos[i+1]; pC2++) {
11 int j = C2_crd[pC2];
12 a[i] += w[j] * C[pC2];
13 }
14 }

(b) After: ∀i (∀j ai += wjCij)where (∀j wj =Bij)

Fig. 4: Kernels that compute the inner product of each pair of
rows in two CSR matrices (ai =

∑
j BijCij) before and after

applying the workspace transformation to the matrix B. The
workspace transformation introduces a where statement that
replaces the merge loop in (a) with two for loops in (b).

Figure 5 shows a sparse matrix addition with CSR matrices
before and after applying the workspace transformation twice,
resulting in a kernel with three loops. The first two loops add
each of the operands B and C to the workspace, and the third
loop copies the non-zeros from the workspace to the result A.
The first workspace transformation applies to the subexpression
Bij + Cij over j resulting in

∀i (∀j Aij =wj)where (∀j wj =Bij + Cij) .

The second transformation applies to the Bij subexpression
on the producer side of the where statement. Without result
reuse the result would be

∀i
(
∀j Aij =wj

)
where

((
∀j wj = vj + Cij

)
where(

∀j vj =Bij

))
,

but with result reuse the two operands are added to the same
workspace in a sequence statement

∀i (∀j Aij =wj)where (∀j wj =Bij ; ∀j wj += Cij) .

C. Policy Heuristics

The three motivating goals of the workspace transformation
can be used as simple heuristics that describe when kernels
might benefit from the workspace transformation. Let I and i
be sets of index variables where I contains i. Informally:

 1 int pA2 = 0;
 2 for (int i = 0; i < m; i++) {
 3 int pB2 = B2_pos[i];
 4 int pC2 = C2_pos[i];
 5 while (pB2 < B2_pos[i+1] && pC2 < C2_pos[i+1]) {
 6 int jB = B2_crd[pB2];
 7 int jC = C2_crd[pC2];
 8 int j = min(jB, jC);
 9 if (jB == j && jC == j) {
10 A[pA2++] = B[pB2] + C[pC2];
11 }
12 else if (jB == j) {
13 A[pA2++] = B[pB2];
14 }
15 else {
16 A[pA2++] = C[pC2];
17 }
18 if (jB == j) pB2++;
19 if (jC == j) pC2++;
20 }
21 while (pB2 < B2_pos[i+1]) {
22 A[pA2++] = B[pB2++];
23 }
24 while (pC2 < C2_pos[i+1]) {
25 A[pA2++] = C[pC2++];
26 }
27 }

(a) Before: ∀ij Aij =Bij + Cij

 1 memset(w, 0, w1_size * sizeof(double));
 2 for (int i = 0; i < m; i++) {
 3 for (int pB2 = B2_pos[i]; pB2 < B2_pos[i+1]; pB2++) {
 4 int j = B2_crd[pB2];
 5 w[j] = B[pB2];
 6 }
 7
 8 for (int pC2 = C2_pos[i]; pC2 < C2_pos[i+1]; pC2++) {
 9 int j = C2_crd[pC2];
10 w[j] += C[pC2];
11 }
12
13 for (int pA2 = A2_pos[i]; pA2 < A2_pos[i+1]; pA2++) {
14 int j = A2_crd[pA2];
15 A[pA2] = w[j];
16 w[j] = 0.0;
17 }
18 }

(b) After: ∀i (∀j Aij =wj)where (∀j wj =Bij ; ∀j wj += Cij)

Fig. 5: Kernels that add CSR matrices (Aij = Bij + Cij)
before and after applying the workspace transformation twice.
The first application is to the expression Bij + Cij over j.
The second is to Bij over j and reuses the workspace. The
transformations replace the inner merge loop with two loops
to accumulate the operands into w and one to copy w to A.

Simplify merges Statements of the form (∀IAi ⊕= BI ⊗
CI ⊗ DI ⊗ ...) merging more than 3 sparse tensors
B,C,D, ... into a sparse A result in expensive merges. We
avoid this cost by creating a dense workspace, producing
(∀IAi =wi)where (∀Iwi ⊕= BI ⊗ CI ⊗DI ⊗ ...).

Avoid expensive inserts Statements of the form (∀IAi ⊕=
EI) where A is sparse will accumulate into a sparse
output. Avoid sparse inserts by introducing a workspace
to produce (∀IAI =wI)where (∀IwI ⊕= EI).

Hoist loop invariant code Statements of the form (∀IAI ⊕=
EI ⊗ Fi) redundantly compute the expression Fi. Trans-
form to make (∀I ⊕= EI ⊗ wi)where (∀iwi =Fi).

Applying these heuristics may require rewriting the expres-
sion first, and different equivalent forms of an expression may
result in expressions with different performance characteristics.

185

schedule
transformations

Index Notation

Concrete Index Notation

Imperative Low-Level IR

lowering

concretization

Target Code (e.g., C, LLVM)

specialization

Fig. 6: Compiler stages from index notation, through concrete
index notation with reorder and workspace schedule transfor-
mations, to low-level imperative IR and target code.

VI. COMPILATION

This section describes the transformations to and from
concrete index notation, called concretization and lowering.
Figure 6 shows the compiler workflow, with IRs as boxes and
IR transformations as arrows. Most transformations translate
from an IR at a higher level of abstraction to an IR at a lower
level of abstraction. The workspace transformation, however,
transforms concrete index notation. As shown in Section III,
these transformations are programmatically requested, by the
user or by a policy system.

The concretization IR transformation transforms index nota-
tion into concrete index notation in two steps:
Insert forall statements for the index variables in the index

notation expression. The forall statements of free index
variables are nested outside those of reduction variables.

Replace reduce expressions with where statements whose
producer substatement reduces into a scalar variable.

The result is valid concrete index notation that can be optimized
with the workspace transformation and further lowered to low-
level sparse imperative code.

The IR lowering transforms concrete index notation into
sparse imperative C-like code. This algorithm internally uses
the merge lattices we described in prior work but is simpler than
the code generation algorithm described there [4]. The reason
for the increased simplicity is that it lowers concrete index
notation statements instead of iteration graphs. It therefore does
not need to deduce at each recursive step what subexpressions
are available to be emitted.

The code generation algorithm recurs on concrete index
notation statements. When it encounters assignment statements
it emits them as scalar code. When it encounters where
statements the algorithm emits the producer side followed
by the consumer side. Finally, when it encounters sequence
statement it emits the left-hand side followed by the right-hand
side.

The main complexity of sparse code generation is isolated
to the code generation of forall statements, as these must

 1 memset(A, 0, A1_size * A2_size * sizeof(double));
 2 for (int pB1 = B1_pos[0]; pB1 < B1_pos[1]; pB1++) {
 3 int i = B1_crd[pB1];
 4 for (int pB2 = B2_pos[pB1]; pB2 < B2_pos[pB1+1]; pB2++) {
 5 int j = B2_crd[pB2];
 6 int pA2 = (i * A2_size) + j;
 7 int pB3 = B3_pos[pB2];
 8 int pc1 = c1_pos[0];
 9 while (pB3 < B3_pos[pB2+1] && pc1 < c1_pos[1]) {
10 int kB = B3_crd[pB3];
11 int kc = c1_crd[pc1];
12 int k = min(kB, kc);
13 if (kB == k && kc == k) {
14 A[pA2] += B[pB3] * c[pc1];
15 }
16 if (kB == k) pB3++;
17 if (kc == k) pc1++;
18 }
19 }
20 }

Fig. 7: Sparse generated code of a tensor-vector multiplication
∀ijk Aij += Bijkck, where B and c are sparse.

simultaneously coiterate over hierarchical tensor data structures.
We refer the reader to our prior work for more intuition
about hierarchical coiteration and the iteration graph graphical
notation [4, Section 4]. In the code generation approach we
describe in this paper, iteration graphs have been replaced with
concrete index notation. To generate code for a forall statement,
the new code generation algorithm traverses the forall’s body
to collect all tensor modes that are indexed by the forall’s
index variable. The generated code for the forall statement
must coiterate over these tensor modes by coiterating over
their sparse data structures. For example, Figure 7 shows the
sparse code to compute a sparse tensor-vector multiplication.
The outer loops generated for the forall statements of i (lines 2–
3) and j (line 4–5) iterate over only the sparse data structures
of B, since i and j are only used to access B. Note that A is
a result and does not need to be iterated over since its iteration
space is the same as B by definition. The inner while loop
generated for the forall statement k (lines 9–12), however,
coiterates over the sparse data structures of the last mode of
B and the vector c. This coiteration while loop iterates over
their intersection since B and c are multiplied. If they were
instead added then three while loops would be generated to
coiterate over their union.

Forall statements are lowered to imperative code using merge
lattices to generate merge code as described in our prior
work [4, Section 5]. We refer the reader to this paper for
a full explanation and limit this exposition to outlining the
differences in the algorithm due to the use of concrete index
notation. The recursive calls to generate code for concrete
index notation substatements, however, are handled differently.
When recursively generating code at a lattice point, the data
structures that are exhausted at that point are collected and the
concrete index notation substatement is rewritten to remove
them by symbolically setting them to zero. Thus, we only recur
on the parts of the statement that are not exhausted, which
simplifies the algorithm.

In code listings that compute sparse results, we have so far
shown only kernels that compute results without assembling

186

 1 A_pos = malloc((m+1) * sizeof(int));
 2 A_crd = malloc(A_crd_size * sizeof(int));
 3
 4 row = malloc(row_size * sizeof(bool));
 5 memset(row, 0, row_size * sizeof(bool));
 6 rowlist = malloc(row_size);
 7
 8 A_pos[0] = 0;
 9 for (int i = 0; i < m; i++) {
10 rowlist_size = 0;
11 for (int pB = B_pos[i]; pB < B_pos[i+1]; pB++) {
12 int k = B_crd[pB];
13 for (int pC = C_pos[k]; pC < C_pos[k+1]; pC++) {
14 int j = C_crd[pC];
15 if (!row[j]) {
16 rowlist[rowlist_size++] = j;
17 row[j] = true;
18 }
19 }
20 }
21
22 // Sort row indices
23 sort(rowlist, rowlist_size);
24
25 // Make sure A_crd is large enough
26 if (A_crd_size < (A_pos[i] + rowlist_size)) {
27 A_crd_size = (A_pos[i] + rowlist_size) * 2;
28 A_crd = realloc(A_crd, A_crd_size * sizeof(int));
29 }
30
31 // Copy row workspace indices to A_crd
32 for (int prow = 0; prow < rowlist_size; prow++) {
33 int j = rowlist[prow];
34 A_crd[A_pos[i] + prow] = j;
35 row[j] = false;
36 }
37 A_pos[i+1] = A_pos[i] + rowlist_size;
38 }
39 A = malloc(A_pos[m] * sizeof(float));

Fig. 8: Sparse matrix multiply assembly kernel (the compute
kernel is in Figure 1d). The coordinates of row i are inserted
into rowlist on line 16 and copied to A on line 34. The array
row guards against redundant inserts.

sparse index structures (Figures 1d, 5b, and 10). This let us
focus on the loop structures without the added complexity of
workspace assembly. Moreover, it is common in numerical code
to separate the kernel that assembles index structures (often
called symbolic computation) from the kernel that computes
values (numeric computation) [6], [17]. The code generation
algorithm we outlined in prior work [4] and modified here
can emit either, or a kernel that simultaneously assembles the
result index structures and computes its values.

When generating assembly kernels from concrete index
notation, a workspace results in two arrays that together
track the workspace nonzero coordinates. The first array (e.g.,
rowlist) is a list of coordinates that have been inserted into the
workspace, and the second array (e.g., row) is a Boolean array
that guards against redundant inserts into the coordinate list.

Figure 8 shows assembly code for the linear combination of
rows sparse matrix multiplication example from Section II. It
is generated from the same concrete index notation statement
as the compute kernel in Figure 1d, so the loop structure is the
same except for the loop to copy the workspace to A starting on
line 32. In compute kernels, the index structure of A has been
pre-assembled so the code generation algorithm emits a loop to
iterate over A. In an assembly kernel, however, it emits code to
iterate over the index structure of the workspace. Furthermore,

the assembly kernel inserts into the workspace index (rowlist)
on lines 15–18, instead of computing a result, and sorts the
index list on line 23 so that the new row of A is ordered. Note
that the sort is optional and only needed if the result must
be ordered. Finally, the assembly kernel allocates additional
coordinate memory on lines 26–29 by repeated doubling.

VII. CASE STUDY: MATRICIZED TENSOR TIMES
KHATRI-RAO PRODUCT (MTTKRP)

The matricized tensor times Khatri-Rao product (MTTKRP)
is the critical kernel in the alternating least squares (ALS) algo-
rithm for computing the canonical polyadic decomposition of
tensors [18]. This decomposition generalizes the singular value
decomposition to higher-order tensors and has applications in
data analytics [19], machine learning [20], neuroscience [21],
image classification and compression [22], and other fields [23].

The ALS algorithm and the MTTKRP kernel can be used
to factorize tensors of any order. The MTTKRP kernel for a
k-order factorization consists of a k-order tensor multiplied
by k − 1 matrices in different modes. For example, the 4-
order MTTKRP kernel is Aij =

∑
klm BiklmCmjDljEkj . In

this section we apply the workspace transformation twice
to optimize the 3-order MTTKRP kernel; however, equiva-
lent transformations apply to higher-order kernels. The first
workspace transformation in this section results in an MTTKRP
kernel roughly equivalent to the hand-optimized implementation
in SPLATT [7], while the second transformation enables
MTTKRP with sparse matrices.

The MTTKRP kernel for factorizing 3-order tensors is
expressed in tensor index notation as

Aij =
∑
kl

BiklCljDkj

and multiplies a 3-order tensor by two matrices in the l and k
dimensions. This requires four nested loops: the three outermost
loops iterate over the sparse data structure of B, while the
innermost loop iterates over the full range of j.

A concrete index notation statement for MTTKRP is

∀iklj Aij += BiklCljDkj .

In this statement, the forall statements have been reordered
from the initial concretized form, so the sparse tensor B is
traversed in the order of its sparse hierarchical data structure.
When we apply the workspace transformation to BiklClj at j
the statement is transformed to precompute the subexpression
in the workspace w, resulting in the statement

∀ik (∀j Aij += wjDkj)where (∀lj wj += BiklClj) .

The workspace transformation has split the forall statement of
the j index variable into two forall statements, one on each
side of the where statement. Notice that the index variable l
is not used to index any tensors on the consumer (left) side
of the where statement. As a result, the l forall statement has
been eliminated from that side. The loop elimination was our
purpose in applying the transformation as it caused the wjDkj

multiplication to be computed at a higher level in the resulting

187

 1 memset(A, 0, A1_size * A2_size * sizeof(double));
 2 memset(w, 0, w1_size * sizeof(double));
 3 for (int pB1 = B1_pos[0]; pB1 < B1_pos[1]; pB1++) {
 4 int i = B1_crd[pB1];
 5 for (int pB2 = B2_pos[pB1]; pB2 < B2_pos[pB1+1]; pB2++) {
 6 int k = B2_crd[pB2];
 7 for (int pB3 = B3_pos[pB2]; pB3 < B3_pos[pB2+1]; pB3++) {
 8 int l = B3_crd[pB3];
 9 for (int j = 0; j < n; j++) {
 10 int pC2 = (l * C2_size) + j;
- 11 int pD2 = (k * D2_size) + j;
- 12 int pA2 = (i * A2_size) + j;
- 13 A[pA2] += B[pB3] * C[pC2] * D[pD2];
+ 14 w[j] += B[pB3] * C[pC2];
 15 }
 16 }
 17
+ 18 for (int j = 0; j < n; j++) {
+ 19 int pD2 = (k * D2_size) + j;
+ 20 int pA2 = (i * A2_size) + j;
+ 21 A[pA2] += w[j] * D[pD2];
+ 22 w[j] = 0.0;
+ 23 }
 24 }
 25 }

Fig. 9: Source code diff that shows the effect on the generated
code of applying the transformation to precompute BiklClj

into the workspace w.

loop nest. This transformation demonstrates that the workspace
transformation can be used to hoist sparse loop-invariant code.

The source code diff in Figure 9 shows the effect of the
first workspace transformation on the sparse code that results
from compiling the concrete index notation expressions. White
background shows unchanged code, red background shows
removed code, and green background shows added code. The
transformed concrete index notation results in code where the
j loop starting on line 9, that multiplies B with D, has been
lifted out of the l loop starting on line 7, resulting in fewer
multiplications. The cost is that the workspace reduces temporal
locality, due to the reuse distance between writing values and
reading them back. Our results in Figure 12 shows that this
specific transformation results in better performance on two
large data sets and reduces performance on a smaller data set.
It should therefore be applied judiciously.

The MTTKRP kernel, like the sparse matrix multiplication
in Figure 1d, scatters values into the result matrix A. We
can observe this from the use of an incrementing assignment
statement, Aij += wjDkj , and the reason is that the statement
is inside one or more forall loops corresponding to a summation.
If the matrix A is sparse, then inserts are expensive and the
code profits from applying the workspace transformation again
to precompute wjDkj into a workspace v, resulting in the
statement

∀i
(
∀j Aij = vj

)
where

(
∀k
(
∀j vj += wjDkj

)
where(

∀lj wj += BiklClj

))
As a result the assignment to A is no longer an incrementing
assignment. Instead, the values are scattered into a dense
workspace with random access and then copied to the result
after a full row of the result has been computed. The source
code diff in Figure 10 shows the effect on the compiled code of

- 1 memset(A, 0, A1_size * A2_size * sizeof(double));
+ 1 memset(v, 0, v1_size * sizeof(double));
 2 for (int pB1 = B1_pos[0]; pB1 < B1_pos[1]; pB1++) {
 3 int i = B1_crd[pB1];
 4 for (int pB2 = B2_pos[pB1]; pB2 < B2_pos[pB1+1]; pB2++) {
 5 int k = B2_crd[pB2];
 6 memset(w, 0, w1_size * sizeof(double));
 7 for (int pB3 = B3_pos[pB2]; pB3 < B3_pos[pB2+1]; pB3++) {
 8 int l = B3_crd[pB3];
 9 for (int pC2 = C2_pos[l]; pC2 < C2_pos[l+1]; pC2++) {
 10 int j = C2_crd[pC2];
 11 w[j] += B[pB3] * C[pC2];
 12 }
 13 }
 14
 15 for (int pD2 = D2_pos[k]; pD2 < D2_pos[k+1]; pD2++) {
 16 int j = D2_crd[pD2];
- 17 int pA2 = (i * A2_size) + j;
- 18 A[pA2] += w[j] * D[pD2];
+ 19 v[j] += w[j] * D[pD2];
 20 }
 21 }
 22
+ 23 for (int pA2 = A2_pos[i]; pA2 < A2_pos[i+1]; pA2++) {
+ 24 int j = A2_crd[pA2];
+ 25 A[pA2] = v[j];
+ 26 v[j] = 0.0;
+ 27 }
 28 }

Fig. 10: Source code diff that shows the effect on the generated
code of applying a further transformation to also precompute
wjDkj into the workspace v.

making the result matrix A sparse and precomputing wjDkj in
a workspace v. Both the code from before the transformation
(red) and the code after (green) assumes the operand matrices
C and D are sparse, as opposed to Figure 9 where C and D
were dense. As in the sparse matrix multiplication code, the
code after the workspace transformation scatters into a dense
workspace v and, when a full row has been computed, appends
the workspace nonzeros to the result.

VIII. EVALUATION

In this section, we evaluate the effectiveness of the workspace
transformation by comparing the performance of sparse kernels
with workspaces against hand-written state-of-the-art sparse
libraries for linear and tensor algebra.

A. Methodology

All experiments run on a dual-socket 2.5 GHz Intel Xeon
E5-2680v3 machine with 12 cores/24 threads and 30 MB of L3
cache per socket, running Ubuntu 14.04.5 LTS. The machine
contains 128 GB of memory and runs kernel version 3.13.0
and GCC 5.4.0. For all experiments, we ensure the machine is
otherwise idle and report average cold cache performance for
single-threaded execution, unless otherwise noted.

We evaluate our approach by comparing performance on
linear algebra kernels with Eigen [9] and Intel MKL [8] 2018.0,
two high-performance linear algebra libraries. We also compare
performance for tensor algebra kernels against the high-
performance SPLATT library for sparse tensor factorizations [7].
We obtained real-world matrices and tensors for the experiments
in Sections VIII-B and VIII-C from the SuiteSparse Matrix
Collection [24] and the FROSTT Tensor Collection [25]. Details
of the matrices and tensors used in the experiments are shown

188

0 1 2 3 4 5 6 7 8 9 10
Matrix

0

2

4

6

8
No

rm
al

ize
d

tim
e

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

workspace-ordered
eigen

0 1 2 3 4 5 6 7 8 9 10
Matrix

0.0

0.5

1.0

1.5

No
rm

al
ize

d
tim

e

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

4e
-4

1e
-4

workspace-unordered
mkl

Fig. 11: Sparse matrix multiplication results for the matrices in Table I. Matrix numbers correspond to Table I. We show relative
runtime for both sorted (left) and unsorted column entries (right); Eigen’s algorithm sorts them while MKL’s mkl sparse spmm
function leaves them unsorted. For the sorted algorithm, we include sorting time in the measurements.

TABLE I: TEST MATRICES FROM THE SUITESPARSE MA-
TRIX COLLECTION [24] AND TENSORS FROM THE FROSTT
TENSOR COLLECTION [25].

Tensor Domain NNZ Density
0 bcsstk17 Structural 428,650 4E-3
1 pdb1HYS Protein data base 4,344,765 3E-3
2 rma10 3D CFD 2,329,092 1E-3
3 cant FEM/Cantilever 4,007,383 1E-3
4 consph FEM/Spheres 6,010,480 9E-4
5 cop20k FEM/Accelerator 2,624,331 2E-4
6 shipsec1 FEM 3,568,176 2E-4
7 scircuit Circuit 958,936 3E-5
8 mac-econ Economics 1,273,389 9E-5
9 pwtk Wind tunnel 11,524,432 2E-4
10 webbase-1M Web connectivity 3,105,536 3E-6

Facebook Social Media 737,934 1E-7
NELL-2 Machine learning 76,879,419 2E-5
NELL-1 Machine learning 143,599,552 9E-13

in Table I. For synthetic inputs (used, for example, in our sparse
matrix addition benchmark), we constructed the synthetic sparse
inputs using the random matrix generator in taco, which places
nonzeros randomly to reach a target sparsity. All sparse matrices
are stored in the compressed sparse row (CSR) format.

B. Sparse Matrix Multiplication

Fast sparse matrix multiplication algorithms use workspaces
to store intermediate values [6], [9]. We compare our generated
workspace algorithm to the implementations in MKL and Eigen.
We compute sparse matrix multiplication with two operands: a
real-world matrix from Table I and a synthetic matrix generated
with a specific target sparsity and uniform random placement
of nonzeros. Eigen implements a sorted algorithm, which sorts
the column entries within each row so they are ordered, while
MKL’s mkl sparse spmm implements an unsorted algorithm—
the column entries are unsorted.1 Because these two algorithms
incur different costs, we compare to a workspace variant of
each; for the sorted algorithm, we include sorting time. In
both cases, the workspace algorithm fuses assembly of the
output matrix with the computation. Note that our previous
implementation2 does not generate sparse matrix multiplication,

1According to MKL documentation, its sorted algorithms are deprecated
and should not be used.

2as of Git revision bf68b6

facebook nell-1 nell-2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 t

im
e

taco workspace splatt

1.0 0.25 0.02 0.01 2.5E-3 1E-4
Density

10-2

10-1

100

101

R
e
la

ti
v
e
 T

im
e
 (

sp
a
rs

e
 /

 d
e
n
se

) MTTKRP Sparse / Dense Output

Facebook

NELL-1

NELL-2

Fig. 12: Left: MTTKRP running times, normalized to taco
time, running on in parallel on a single socket. Right: Relative
MTTKRP compute time as the density of matrix operands
varies, for the three test sparse tensors, for MTTKRP with
sparse output and matrix operands, compared with MTTKRP
with dense output and matrix operands. The latter comparison
uses single-threaded performance, as we have not implemented
a parallel MTTKRP with sparse output.

because it does not support insertion into sparse results, so we
omit it from this comparison.

Figure 11 shows running times for sparse matrix multi-
plication for each matrix in Table I multiplied by a synthetic
matrix of nonzero densities 1E-4 and 4E-4, using our workspace
implementation. On average, Eigen is slower than our approach,
which generates a variant of Gustavson’s matrix multiplication
algorithm, by 4× and 3.6× respectively for the two sparsity
levels. For the unsorted algorithm, we compare against MKL,
and find that our performance is 28% and 16% faster on average.
The generated workspace algorithm is faster (by up to 68%)
than MKL’s hand-optimized implementation in all but one case,
which is 31% slower.

C. Matricized Tensor Times Khatri-Rao Product

Matricized tensor times Khatri-Rao product (MTTKRP) is
used to compute tensor factorizations in data analytics. The
three-dimensional version takes as input a sparse 3-tensor and
two matrices, and outputs a matrix. Figure 12 shows the results
for our workspace algorithm on three input tensors, compared
to taco and the hand-coded SPLATT library. We compare
parallel single-socket implementations, using numactl to
restrict execution to a single socket.

189

1 2 3 4 5 6
Additions

0.0

0.2

0.4

0.6

0.8

1.0

1.2
T
o
ta

l
ti

m
e
 (

se
c)

taco-binop

taco

workspace

eigen

mkl

Code Asse
mbly

Com
pute

taco bin 247 211
taco 190 182
workspace 190 93.3
Eigen 436
MKL 1141

Fig. 13: Left: Scaling plot that shows the time in seconds to
assemble and compute n matrix additions with Eigen, MKL,
taco binary operations, a single multi-operand taco function,
and with workspaces. For n additions, n+ 1 matrix operands
are added together. Right: Breakdown of sparse matrix addition
time in milliseconds for adding 7 matrices, for all codes. The
operands are generated random sparse matrices of densites
(fraction of nonzeros) 2.56E-02, 1.68E-03, 2.89E-04, 2.50E-03,
2.92E-03, 2.96E-02, and 1.06E-02.

For the NELL-1 and NELL-2 tensors, the workspace
algorithm outperforms the merge-based algorithm in taco by
12% and 35% respectively, and is within 5% of the hand-coded
performance of SPLATT. On the smaller Facebook data set,
the merge algorithm is faster than both our implementation
and SPLATT’s. Different inputs perform better with different
algorithms, which demonstrates the advantage of being able
to generate both versions of the algorithm. Since MTTKRP
is the biggest bottleneck of the widely used alternating least
squares tensor decomposition algorithm, accounting for 69–
99% of the computation time [26], we expect that speeding
up MTTKRP using the workspace transformation will provide
similar speedups to the overall runtime of tensor decomposition.

D. MTTKRP with Sparse Matrices

It is useful to support MTTKRP where both the tensor and
matrix operands are sparse [27]. If the result is also sparse,
then MTTKRP can be faster since it only needs to iterate over
nonzeros. The code is tricky to write, however, and cannot
be generated by the current version of taco. In this section,
we evaluate a workspace implementation of sparse MTTKRP.
Because we have not implemented a parallel version of
MTTKRP with sparse outputs, we perform this comparison with
single-threaded implementations of both MTTKRP versions.

Which version is faster depends on the density of the sparse
operands. Figure 12 shows experiments that compare the
compute times for MTTKRP with sparse matrices against
MTTKRP with dense matrices, as we vary the density of the
randomly generated input matrices. For each of the tensors,
the crossover point is at about 25% nonzero values, showing
that such a sparse algorithm can be faster even with only a
modest amount of sparsity in the inputs. At the extreme, matrix
operands with density 1E-4 can obtain speedups of 4.5–11×
for our three test tensors.

E. Sparse Matrix Addition

To demonstrate the utility of workspaces for sparse matrix
addition, we show that the algorithm scales as we increase the
number of operands. In Figure 13, we compare the workspace
algorithm to taco computing one addition at a time (as a library
would be implemented), taco generating a single function
for the additions, Intel MKL (using its inspector-executor
implementation), and Eigen. We pre-generate k matrices with
target sparsities chosen uniformly randomly from the range
[1E-4, 0.01] and always add in the same order and with the
same matrices for each library. Note also that the x-axis shows
the number of additions, which is always one more than the
number of operands.

The results of this experiment show two things. First, that the
libraries are hampered by performing addition two operands at
a time, having to construct and compute multiple temporaries,
resulting in less performance than is possible using code
generation. Even given this approach, taco is faster than
Intel MKL by 2.8× on average, while Eigen and taco show
competitive performance.

Secondly, the experiment shows the value of being able to
produce both merge-based and workspace-based implemen-
tations of sparse matrix addition. At up to four additions,
the two versions are competitive, with the merge-based code
being slightly faster. However, with increasing numbers of
additions, the workspace code begins to outperform the taco
implementation, showing an increasing gap as more operands
are added. Figure 13 (right) breaks down the performance of
adding 7 operands, separating out assembly time for the taco-
based and workspace implementations. For this experiment, we
reuse the matrix assembly code produced by taco to build the
output, but compute using a workspace. Most of the time is
spent in assembly, which is unsurprising, given that assembly
requires memory allocations, while the computation performs
only point-wise work without the kinds of reductions found in
MTTKRP and sparse matrix multiplication.

IX. RELATED WORK

Related work is divided into work on dense and sparse
tensor algebra compilation, work on general loop optimization,
alternatives to concrete index notation, and manual workspace
transformations in specific matrix and tensor kernels.

There has been much work on optimizing dense matrix
and tensor computations [28]–[31]. Researchers have also
worked on compilation and code generation of sparse matrix
computations, including Bik and Wijshoff [1], the Bernoulli
system [2], and SIPR [32]. Furthermore, this paper builds on
our recent work on a sparse tensor algebra theory [4], [33] and
tool [34] that compiles tensor index notation on sparse and
dense tensors, and that we have extended to cover many more
sparse tensor formats [5]. These sparse compilation approaches,
however, did not generate sparse code with tensor workspaces
to improve performance.

One use of the workspace transformation in loop nests,
in addition to removing multi-way merge code and scatters
into sparse results, is to split apart computation that may

190

take place at different loop levels. This results in operations
being hoisted to a higher loop nest. Loop invariant code
motion has a long history in compilers, going back to the
first FORTRAN compiler in 1957 [35]. Recently, researchers
have found new opportunities for removing redundancy in loops
by taking advantage of high-level algebraic knowledge [36].
Our workspace transformation applies to sparse tensor algebra
and can remove loop redundancies from sparse code with
indirect-access loop bounds and many conditional branches.

The polyhedral model was designed to optimize dense
loop nests with affine loop bounds and affine array accesses.
Sparse codes, however, have while loops and indirect array
accesses. Recent work extended the polyhedral model to these
situations [3], [15], [16], [37], [38], using a combination of
compile-time and runtime techniques. However, the space of
loop nests on hierarchical indirect array accesses is complicated
and it is difficult for compilers to determine when optimizations
are applicable. For example, the work of Spek and Wijshoff [39]
and Venkat et al. [3] transforms sparse code into dense loops
and introduces a conditional to ensure only nonzero entries are
computed. In this way, traditional dense loop transformations
such as tiling can be applied before transforming the code back
to operate on sparse structures. However, this technique does
not introduce dense tensor temporaries like the workspace trans-
formation but tackles the orthogonal problem of transforming
already-existing sparse accesses. Our workspace transformation
applies to sparse tensor algebra at the concrete index notation
level before sparse code is generated. This makes it possible to
perform aggressive optimizing transformations while ensuring
the legality of the generated code.

The value of concrete index notation is to specify com-
putation order and temporaries within that order in tensor
expressions, while semantically excluding loop data depen-
dencies. Two similar notations from the recent literature are
Tensor Comprehensions (TC) [13] and GLORE’s LER [36].
The first difference between the concrete index notation and
these languages is that operands can be sparse, and sparse
expressions are optimized before sparse indices, conditionals,
and while loops are introduced. Furthermore, TC consists of
a sequence of index notation expressions where loops are
implied by index variables, so it cannot express workspaces
in inner dimensions (TC’s where clauses set index ranges).
Our notation expresses ordering the same way as GLORE’s
LER notation but expresses temporary computations differently.
First, our notation uses where clauses to express all temporary
computations including reductions, whereas LER has reduction
expressions. Second, our notation has scalar assignments inside
loop expressions, whereas LER has tensor assignments outside
loop expressions. Thus, LER expresses temporary computations
as separate statements, and cannot express temporaries inside
loop nests without further loop fusion in another notation.

The first use of dense workspaces for sparse matrix com-
putations is Gustavson’s sparse matrix multiplication imple-
mentation, that we recreate with the workspace transformation
to produce the code in Figure 1d [6]. A workspace used for
accumulating temporary values is referred to as an expanded

real accumulator in [40] and as an abstract sparse accumulator
data structure in [41]. Dense workspaces and blocking are used
together to produce fast parallel code by Patwary et al. [12].
They also tried a hash map workspace, but report that it did
not have good performance for their use. Furthermore, Buluç
et al. use blocking and workspaces to develop sparse matrix-
vector multiplication algorithms for the CSB data structure that
are equally fast for Ax and ATx [42]. Im et. al. and Vuduc
et. al. store regular dense blocks in the BCSR sparse matrix
format and present several heuristics to choose block sizes for
sparse matrix operations and storage [43], [44]. Finally, Smith
et al. uses a workspace to hoist loop-invariant code in their
implementation of MTTKRP in the SPLATT library [7]. We
re-create this optimization with the workspace transformation
and show the resulting source code in Figure 9.

X. CONCLUSION

This paper presents a transformation to introduce workspaces
into sparse code to remove insertion into sparse results, to
remove conditionals, and to hoist loop-invariant computations.
The transformation is expressed in a new concrete index
notation IR for describing how tensor index notation should
execute. The transformation enables a new class of sparse tensor
computations with sparse results and improves performance
of other tensor computations to match state-of-the-art hand-
optimized implementations. We believe the importance of
workspaces will increase in the future as combining new
tensor formats will require workspaces as glue. Furthermore,
we believe concrete index notation can grow into a language
for general tensor code transformation, including loop tiling,
strip-mining, and splitting. Combined with a full-fledged
scheduling language to command these concrete index notation
transformations, the resulting system would separate algorithm
from schedule. This would allow end users to specify the
computation they want, in tensor index notation, while the
specification for how it should execute can be specified by
performance experts, autotuning systems, machine learning, or
heuristics.

ACKNOWLEDGMENT

We thank Samuel Gruetter, Ryan Senanayake, and Stephen
Chou for helpful discussion, suggestions, and reviews. This
work was supported by the Application Driving Architectures
(ADA) Research Center, a JUMP Center co-sponsored by
SRC and DARPA; the Toyota Research Institute; the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research under Award Numbers DE-
SC0008923 and DE-SC0018121 and a Computational Science
Graduate Fellowship DE-FG02-97ER25308; the National Sci-
ence Foundation under Grant No. CCF-1533753; and DARPA
under Award Number HR0011-18-3-0007. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the funding agencies.

191

REFERENCES

[1] A. J. Bik and H. A. Wijshoff, “Compilation techniques for sparse matrix
computations,” in Proceedings of the 7th international conference on
Supercomputing. ACM, 1993, pp. 416–424.

[2] V. Kotlyar, K. Pingali, and P. Stodghill, “A relational approach to
the compilation of sparse matrix programs,” in Euro-Par’97 Parallel
Processing. Springer, 1997, pp. 318–327.

[3] A. Venkat, M. Hall, and M. Strout, “Loop and data transformations
for sparse matrix code,” in Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI 2015, 2015, pp. 521–532.

[4] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe,
“The tensor algebra compiler,” Proc. ACM Program. Lang., vol. 1, no.
OOPSLA, pp. 77:1–77:29, Oct. 2017.

[5] S. Chou, F. Kjolstad, and S. Amarasinghe, “Format abstraction for
sparse tensor algebra compilers,” Proc. ACM Program. Lang., vol. 2, no.
OOPSLA, pp. 123:1–123:30, Oct. 2018.

[6] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication
and permuted transposition,” ACM Trans. Math. Softw., vol. 4, no. 3,
1978.

[7] S. Smith, N. Ravindran, N. Sidiropoulos, and G. Karypis, “Splatt:
Efficient and parallel sparse tensor-matrix multiplication,” in 2015 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2015, pp. 61–70.

[8] Intel, “Intel math kernel library reference manual,” 630813-051US,
2012. http://software.intel.com/sites/products/documentation/hpc/mkl/
mklman/mklman.pdf, Tech. Rep., 2012.

[9] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[10] MATLAB, version 8.3.0 (R2014a). Natick, Massachusetts: The
MathWorks Inc., 2014.

[11] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand, “Decoupling algorithms from schedules for easy optimization
of image processing pipelines,” ACM Trans. Graph., vol. 31, no. 4, pp.
32:1–32:12, Jul. 2012.

[12] M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Park, M. J. Anderson,
S. G. Vadlamudi, D. Das, S. G. Pudov, V. O. Pirogov, and P. Dubey,
“Parallel efficient sparse matrix-matrix multiplication on multicore
platforms,” in International Conference on High Performance Computing.
Springer, 2015, pp. 48–57.

[13] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor Compre-
hensions: Framework-Agnostic High-Performance Machine Learning
Abstractions,” Feb. 2018.

[14] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and
J. Demmel, “A massively parallel tensor contraction framework for
coupled-cluster computations,” Journal of Parallel and Distributed
Computing, vol. 74, no. 12, pp. 3176–3190, Dec. 2014.

[15] M. M. Strout, G. Georg, and C. Olschanowsky, “Set and Relation
Manipulation for the Sparse Polyhedral Framework,” in Languages
and Compilers for Parallel Computing, ser. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, Sep. 2012, pp. 61–75.

[16] M. Belaoucha, D. Barthou, A. Eliche, and S.-A.-A. Touati, “FADAlib:
an open source C++ library for fuzzy array dataflow analysis,” Procedia
Computer Science, vol. 1, no. 1, pp. 2075–2084, May 2010.

[17] M. T. Heath, E. Ng, and B. W. Peyton, “Parallel algorithms for sparse
linear systems,” SIAM review, vol. 33, no. 3, pp. 420–460, 1991.

[18] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of
products,” Studies in Applied Mathematics, vol. 6, no. 1-4, pp. 164–189,
1927.

[19] A. Cichocki, “Era of big data processing: A new approach via tensor
networks and tensor decompositions,” arXiv preprint arXiv:1403.2048,
2014.

[20] A. H. Phan and A. Cichocki, “Tensor decompositions for feature
extraction and classification of high dimensional datasets,” Nonlinear
theory and its applications, IEICE, vol. 1, no. 1, pp. 37–68, 2010.

[21] J. Möcks, “Topographic components model for event-related potentials
and some biophysical considerations,” IEEE transactions on biomedical
engineering, vol. 35, no. 6, pp. 482–484, 1988.

[22] A. Shashua and A. Levin, “Linear image coding for regression and
classification using the tensor-rank principle,” in Computer Vision and
Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, vol. 1. IEEE, 2001, pp. I–I.

[23] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[24] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,”
ACM Trans. Math. Softw., vol. 38, no. 1, Dec. 2011.

[25] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis.
(2017) FROSTT: The formidable repository of open sparse tensors and
tools. [Online]. Available: http://frostt.io/

[26] J. Li, J. Choi, I. Perros, J. Sun, and R. Vuduc, “Model-driven sparse
cp decomposition for higher-order tensors,” in 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), vol. 00, May
2017, pp. 1048–1057.

[27] S. Smith, A. Beri, and G. Karypis, “Constrained tensor factorization
with accelerated ao-admm,” in Parallel Processing (ICPP), 2017 46th
International Conference on. IEEE, 2017, pp. 111–120.

[28] K. E. Iverson, A Programming Language. Wiley, 1962.
[29] M. J. Wolfe, “Optimizing supercompilers for supercomputers,” Ph.D.

dissertation, University of Illinois at Urbana-Champaign, Champaign, IL,
USA, 1982, aAI8303027.

[30] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving data locality with
loop transformations,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 18, no. 4, pp. 424–453, 1996.

[31] A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, V. Choppella,
D. Cociorva, X. Gao, R. Harrison, S. Krishnamoorthy, S. Krishnan, C.-C.
Lam, Q. Lu, M. Nooijen, R. Pitzer, J. Ramanujam, P. Sadayappan, and
A. Sibiryakov, “Automatic code generation for many-body electronic
structure methods: the tensor contraction engine,” Molecular Physics,
vol. 104, no. 2, pp. 211–228, 2006.

[32] W. Pugh and T. Shpeisman, “Sipr: A new framework for generating
efficient code for sparse matrix computations,” in Languages and
Compilers for Parallel Computing. Springer, 1999, pp. 213–229.

[33] D. Lugato, F. Kjolstad, S. Chou, S. Amarasinghe, and S. Kamil, “Taco:
Compilation et génération de code dexpressions tensorielles,” AVANCÉES,
p. 52, 2018.

[34] F. Kjolstad, S. Chou, D. Lugato, S. Kamil, and S. Amarasinghe, “taco:
A tool to generate tensor algebra kernels,” in Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering.
IEEE Press, 2017, pp. 943–948.

[35] J. Backus, “The history of fortran i, ii, and iii,” in History of programming
languages I. ACM, 1978, pp. 25–74.

[36] Y. Ding and X. Shen, “Glore: Generalized loop redundancy elimination
upon ler-notation,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
pp. 74:1–74:28, Oct. 2017.

[37] A. Venkat, M. S. Mohammadi, J. Park, H. Rong, R. Barik, M. M. Strout,
and M. Hall, “Automating wavefront parallelization for sparse matrix
computations,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Press,
2016, p. 41.

[38] M. M. Strout, M. Hall, and C. Olschanowsky, “The sparse polyhedral
framework: Composing compiler-generated inspector-executor code,”
Proceedings of the IEEE, no. 99, pp. 1–15, 2018.

[39] H. L. Van Der Spek and H. A. Wijshoff, “Sublimation: expanding data
structures to enable data instance specific optimizations,” in Languages
and Compilers for Parallel Computing. Springer, 2011, pp. 106–120.

[40] S. Pissanetzky, Sparse Matrix Technology-electronic edition. Academic
Press, 1984.

[41] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse matrices in matlab:
Design and implementation,” SIAM Journal on Matrix Analysis and
Applications, vol. 13, no. 1, pp. 333–356, 1992.

[42] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures. ACM, 2009,
pp. 233–244.

[43] E.-J. Im and K. Yelick, “Optimizing Sparse Matrix Computations for
Register Reuse in SPARSITY,” in Computational Science ICCS 2001,
ser. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
May 2001, pp. 127–136.

[44] R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala, and B. Lee,
“Performance Optimizations and Bounds for Sparse Matrix-Vector
Multiply.” IEEE, 2002, pp. 26–26.

192

