
26

Unified Buffer: Compiling Image Processing and Machine

Learning Applications to Push-Memory Accelerators

QIAOYI LIU* , JEFF SETTER* , DILLON HUFF , MAXWELL STRANGE , KATHLEEN

FENG , MARK HORO WI TZ , PRIYANKA RAINA , and FREDRIK KJOLSTAD ,
Stanford University, USA

Image processing and machine learning applications benefit tremendously from hardware acceleration. Ex-

isting compilers target either FPGAs, which sacrifice power and performance for programmability, or ASICs,

which become obsolete as applications change. Programmable domain-specific accelerators, such as coarse-

grained reconfigurable arrays (CGRAs), have emerged as a promising middle-ground, but they have tradi-

tionally been difficult compiler targets since they use a different memory abstraction. In contrast to CPUs

and GPUs, the memory hierarchies of domain-specific accelerators use push memories : memories that send

input data streams to computation kernels or to higher or lower levels in the memory hierarchy and store the

resulting output data streams. To address the compilation challenge caused by push memories, we propose

that the representation of these memories in the compiler be altered to directly represent them by combining

storage with address generation and control logic in a single structure—a unified buffer.

The unified buffer abstraction enables the compiler to separate generic push memory optimizations from

the mapping to specific memory implementations in the backend. This separation allows our compiler to

map high-level Halide applications to different CGRA memory designs, including some with a ready-valid

interface. The separation also opens the opportunity for optimizing push memory elements on reconfigurable

arrays. Our optimized memory implementation, the Physical Unified Buffer, uses a wide-fetch, single-port

SRAM macro with built-in address generation logic to implement a buffer with two read and two write ports.

It is 18% smaller and consumes 31% less energy than a physical buffer implementation using a dual-port

memory that only supports two ports.

Finally, our system evaluation shows that enabling a compiler to support CGRAs leads to performance

and energy benefits. Over a wide range of image processing and machine learning applications, our CGRA

achieves 4 . 7 × better runtime and 3 . 5 × better energy-efficiency compared to an FPGA.

CCS Concepts: • Computer systems organization → Reconfigurable computing; • Software and its

engineering → Compilers ;

Additional Key Words and Phrases: Hardware accelerators, memory abstraction, polyhedral analysis, ma-

chine learning

*Q. Liu and J. Setter contributed equally to the article.

This work was supported in part by DARPA’s DSSoC grant FA8650-18-2-7861 and the Stanford AHA Center.

Authors’ address: Q. Liu, J. Setter, D. Huff, M. Strange, K. Feng, M. Horowitz, P. Raina, and F. Kjolstad, Gates Com-

puter Science, 353 Serra Mall, Stanford, CA 94305; emails: {joeyliu, setter}@stanford.edu, dillonhuff@gmail.com, {mstrange,

kzf}@stanford.edu, horowitz@ee.stanford.edu, {praina, kjolstad}@stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org .

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2023/03-ART26

https://doi.org/10.1145/3572908

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

https://orcid.org/0000-0003-1083-9953
https://orcid.org/0000-0002-2327-646X
https://orcid.org/0000-0001-9055-3490
https://orcid.org/0000-0001-5945-1349
https://orcid.org/0000-0001-9860-4942
https://orcid.org/0000-0001-9860-4942
https://orcid.org/0000-0003-3245-7542
https://orcid.org/0000-0002-8834-8663
https://orcid.org/0000-0002-2267-903X
mailto:permissions@acm.org
https://doi.org/10.1145/3572908
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3572908&domain=pdf&date_stamp=2023-03-01

26:2 Q. Liu et al.

ACM Reference format:

Qiaoyi Liu, Jeff Setter, Dillon Huff, Maxwell Strange, Kathleen Feng, Mark Horowitz, Priyanka Raina, and

Fredrik Kjolstad. 2023. Unified Buffer: Compiling Image Processing and Machine Learning Applications to

Push-Memory Accelerators. ACM Trans. Arch. Code Optim. 20, 2, Article 26 (March 2023), 26 pages.

https://doi.org/10.1145/3572908

1

H

c

a

H

c

t

a

a

s

c

t

H

t

f

r

u

C

o

s

b

m

o

y

b

o

t

a

e

l

f

w

t

w

t

b

i

A

 INTRODUCTION

ardware accelerators have emerged as the method to implement complex algorithms on energy-

onstrained devices, as exemplified by the explosion of image processing and machine learning

ccelerators [5 , 12 , 19 , 39 , 42]. Two common hardware targets are FPGAs [7 , 23] and ASICs [28].

owever, FPGAs have low efficiency from being too fine-grained, and single-application ASICs

annot adapt to quickly evolving applications. Programmable domain-specific accelerators like

hose shown in Table 1 are promising, but have historically been challenging compiler targets.

A key compiler challenge is that efficient domain-specific accelerators use a different memory

bstraction than CPUs and GPUs. General-purpose hardware architectures, like CPUs, issue load

nd store instructions to their memory system to pull in the data needed for computation, as is

hown in Figure 1 (a). They implicitly orchestrate data movement [36], their instructions normally

ontain the global address of the data, and they rely on hardware-managed caches to interpret

he address and wait for requested data to be fetched from any of their memory hierarchy levels.

owever, by leveraging domain knowledge of the application, accelerators can perfectly prefetch

he data by using memory units with software-managed memory controllers that are decoupled

rom the compute units. Accelerators can thus overlap the memory loads with computation and

educe the hardware overhead introduced by cache-like pull memory. We refer to such memory

nits as push memories , since they push data to the computational units instead of waiting for a

PU to issue a request for data.

Unlike general-purpose hardware that has a centralized memory system, the memory systems

n programmable push-memory accelerators are distributed. For instance, Figure 1 (b) demon-

trates the memory hierarchy of a coarse-grained reconfigurable array (CGRA) with a multi-

anked global buffer (L2) and on-chip memory tiles (L1). To fully utilize the resources, push-

emory accelerators often have parallel computation units fed by a number of discrete memories

r a computation pipeline with memories and compute units interleaved with each other. This

ields a unique programming challenge: The compilation target is not just a single piece of code

ut a set of programs (or configuration bit-streams) running on every memory’s controller (green

vals in Figure 1 (b)) that manage the data movement. Not only do the programs contain informa-

ion on which data should be accessed (the addresses), but they must also align the timing of read

nd write events inside the buffers to synchronize the flow of data from buffers, through processing

lements for computation, to another buffer.

Since push memories control both temporary storage and the flow of data, they account for a

arge fraction of the chip area and power in push-memory accelerators, as shown in Table 1 . Un-

ortunately, unlike caches used by CPUs, programmable push-memory accelerators do not have a

idely adopted hardware implementation for their memory systems. To minimize area and energy,

hese accelerators typically use their own unique custom implementation of push memory hard-

are optimized for specific applications or classes of applications. Thus, push memories require

he compiler to optimize for a different memory abstraction for every application.

We address these challenges by creating a new push memory abstraction that we call a unified

uffer , so named because it generalizes push memories for different application domains (such as

mage processing and machine learning) and different reconfigurable targets (such as our custom
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

https://doi.org/10.1145/3572908

Unified Buffer: Compiling Image Processing and Machine Learning Applications 26:3

Table 1. The Push Memories in Many Programmable Accelerators

Account for a Large Percentage of Chip Area and Power

Domain Accelerator Area Power

Multiple Plasticine CGRA [38] 30% Not specified

DNN TPU [19] 37% Not specified

DNN Eyeriss [5] 67% 36–44%

DNN Simba PEs [42] 41% 56%

Sparse DNN EIE [12] 93% 59%

Fig. 1. A centralized pull memory hierarchy in a CPU versus distributed push memory and control in a

CGRA.

C

u

a

a

p

m

P

c

H

T

c

f

c

o

m

o

i

b

p

B

h

p

e

b
GRA shown in Figure 9 , ready-valid CGRAs, and FPGAs). The unified buffer abstraction allows

s to compile a program to a single well-defined intermediate representation (IR) , perform

pplication-specific optimization at that level, and then map to different hardware targets. This

bstraction is described in more detail in Section 2 . It also facilitates efficient push memory im-

lementations that use custom circuits to create address generation and control logic that can be

ore sophisticated in how they use the SRAM. An example of an optimized implementation, our

hysical Unified Buffer (PUB) , is described in Section 3 . Taken together, the abstraction lets the

ompiler and hardware generator create more optimized solutions.

Using our unified buffer abstraction, we have developed a compiler backend for a subset of

alide [40] that supports tensor computations, stencils with affine indexing, and lookup tables.

he compiler backend is described in Section 4 and targets programmable push memories. The

ompiler design is based on a simple observation: successful compilers refine and lower a program

rom a high-level description to a low-level description. This observation has a profound impli-

ation for compiling to programmable accelerators: If our target hardware contains high-level,

ptimized push memory primitives, then every stage in the compiler that deals with memories

ust also represent them at this level or higher. In particular, we propose that the representation

f push memories in the compiler must combine storage, address generation, and control logic

n a single structure—the unified buffer. Unified buffers serve as the interface inside the compiler

etween the application and the architecture. They define both the IR used by the compiler during

ush memory mapping and the logical behavior that the hardware architects must implement.

y leveraging this IR, we create a robust compiler system that supports CGRAs as well as other

ardware targets.

Figure 2 shows the compiler pipeline that takes a Halide program and transforms it into a com-

osition of physical buffers. The example program brightens and blurs an image by multiplying

ach pixel by 2 and averaging 2 × 2 boxes. There are three main steps in the compiler: scheduling,

uffer extraction, and buffer mapping. Section 4.1 describes the scheduling step that lowers Halide
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

26:4 Q. Liu et al.

Fig. 2. The three compiler steps for a brighten-then-blur example. Scheduling generates tiled loops, from

which buffer extraction emits the brighten unified buffer. This buffer is then mapped to shift registers (SR)

and our optimized memory tile (MEM) with aggregator (AGG) and transpose buffer (TB).

p

o

m

b

t

v

u

F

a

w

o

2

U

m

m

A

rograms to low-level Halide IR, following user-defined schedules that determine loop tiling, loop

rdering, and where intermediate values are stored [40]. We reinterpret Halide scheduling com-

ands to optimize for a CGRA with programmable push memories. Section 4.2 describes how the

uffer extraction step extracts unified buffers from Halide IR. This step uses polyhedral techniques

o determine the necessary ports, to summarize the statement instances that use each port and the

alues they write to or read from the port, and to calculate the cycle times when the instances

se each port. Furthermore, we can apply optimization on this compiler abstraction automatically.

inally, the buffer mapping step takes as input an abstract unified buffer specification and derives

 correct configuration for the hardware target. We describe mapping to our PUBs and other hard-

are targets in Section 4.3 .

Taken together, we describe the compilation from an application specification to a configuration

f custom hardware. Our contributions are as follows:

• a compiler abstraction of push memories, called a unified buffer, that represents data stor-

age, address generation, and control in the same structure;

• a hardware memory primitive, called the PUB, that implements an efficient version of uni-

fied buffers for CGRA accelerators;

• a compiler that combines polyhedral analysis with vectorization to map unified buffers into

configurations of physical buffers;

• an evaluation of compiling image processing and machine learning applications to a CGRA

using our PUB.

 THE UNIFIED BUFFER ABSTRACTION

nified buffers separate the part of the compiler that analyzes programs to determine and opti-

ize data movement from the part that implements the data movement by configuring physical

emories. Therefore, they have two objectives:

(1) provide a precise description of the requirements of each push memory at its interface

and

(2) maximize opportunities for independent optimization on each side of the interface.
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

Unified Buffer: Compiling Image Processing and Machine Learning Applications 26:5

Fig. 3. The unified buffer specifies the data movement between the brighten and blur kernels in Figure 2 .

Each port is defined by a polyhedral iteration domain and an access map that describe the data written to

and read from the buffer. The schedule describes the cycle at which those values arrive at the port.

T

fi

n

m

i

t

c

s

fi

w

T

t

i

S

d

a

g

c

a

w

o

b

w
he first objective preserves the functionality of the application, while the second ensures its ef-

cient implementation. Push memories are fundamentally defined by their data streams, so we

eed a compact representation of these streams. For this representation we use the polyhedral

odel [3], which provides a compact way to represent schedules and memory access patterns as

nteger sets and relations. Figure 3 shows the unified buffer that is generated to communicate be-

ween the brighten and blur stages of the example in Figure 2 . This buffer accepts one pixel per

ycle from the brighten compute kernel and delivers a 2 × 2 window of pixels per cycle (after a

tartup delay) to the blur kernel. To accommodate the required bandwidth, this unified buffer has

ve ports: one input port and four output ports. The data stream through each port is specified

ith three pieces of information:

• The iteration domain of the operations (statement instances) that use the port. The domain

is defined by the bounds of loops in the loop nest.

• The access map of the operations, that maps each iteration domain point to a value read or

written on the port.

• The schedule of the operations in the iteration domain. This schedule specifies the number

of unstalled cycles between reset and each operation.

he iteration domain integer set and the access map and schedule relations are implemented using

he polyhedral analysis tool ISL [47]. For the input port in our example, the iteration domain is the

nteger set

{ (x , y) | 0 ≤ x ≤ 63 ∧ 0 ≤ y ≤ 63 }.
ince the brighten operation, which is the only user of the input port, is surrounded by a two-

imensional loop, the iteration domain has two index variables: an outermost index variable y and

n innermost index variable x .

The unified buffer does not merely specify what operations use a port. To synthesize address

eneration code and optimize memory sizes, it must also specify what memory locations are ac-

essed by those operations. To specify the memory locations, each port has an access map. For ex-

mple, the second output port of the brighten buffer has the access map (x , y) → brighten (x + 1 , y),
hich means the accessed value is to the right of each point in the operation’s iteration space. The

ther output ports have different maps, thus collectively fetching the 2 × 2 stencil required by the

lur kernel.

The polyhedral schedules used by the unified buffer map loop nests to cycle times in a hard-

are design. This contrasts with conventional polyhedral schedules, such as those produced by
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

26:6 Q. Liu et al.

F

s

m

m

t

b

t

t

m

t

o

p

H

o

b

(

D

k

l

H

A

c

t

o

S

o

t

a

c

c

p

t

i

t

p

i

o

w

m

3

B

a

t

A

eautrier’s algorithm [11] or PLUTO [3], that map elements of the iteration domain to multidimen-

ional timestamps. While these algorithms essentially map loop nests to loop nests, our schedules

ap loop nests to the number of unstalled cycles after reset when each operation begins. To accom-

odate pipelined hardware designs, our schedules map several operations to the same timestamps.

The schedule is used to calculate when reads and writes occur. In our example, the schedule for

he input port is the integer function (x , y) → 64 y + x . It specifies that the first write to the brighten

uffer input port, at coordinate (0 , 0), happens 64 ∗ 0 + 0 = 0 cycles after execution begins and that

he second brighten operation, at coordinate (1 , 0), happens after 64 ∗ 0 + 1 = 1 cycle. Furthermore,

he output ports emit their first value after 65 + 64 ∗ 0 + 0 = 65 cycles, which is the time the buffer

ust delay the first value to generate the correctly aligned output. The internal distances refer to

he number of cycles from when a value arrives at an input port to when it leaves an output port.

The schedules count unstalled cycles instead of clock cycles, to accommodate variable-latency

perations. Since our applications are statically analyzable, our schedules guarantee that data de-

endencies are not violated, assuming the input data are valid and the output data can be stored.

owever, all hardware accelerators have to deal with variable-latency operations like main mem-

ry accesses. We accommodate variable latency by counting how many cycles the buffer has not

een stalled by a dynamic operation. A stall occurs when any buffer input is invalid during a write

e.g., a DRAM read is late) or when any buffer cannot be read since the destination is not ready.

uring a stall, the cycle count is not incremented for all the unified buffers in the application,

eeping the data waves aligned. Once the stall condition resolves, all the cycle counters resume.

In our target CGRA, the interface between the accelerator and the host memory system uses

atency-insensitive channels, while the memory inside the CGRA uses (gated) cycle counters. Our

alide program tiles the inputs to create execution blocks that our compiler statically schedules.

ll statements within the tiled execution block are assigned a timestamp consistent with the global

ycle accurate schedule. This context information ensures the scheduler adds enough buffering

o allow internal compute kernel nodes to read the data from multiple predecessors simultane-

usly even if they are produced at different times. More details about this scheduler are given in

ection 4.2 . Between the tiled execution, we use double-buffered ready-valid channels. Thus, we

nly need to stall if the next tile has not been prefetched from DRAM into the accelerator, or

he previous tile output has not been stored in DRAM before the current tile stops execution. For

 CGRA implementation using ready-valid channels with buffet [36] style memory blocks that

ontain dependency checking capabilities, our compiler outputs address patterns and drops the

ycle accurate information in its schedule. It thus lets the hardware handle execution timing and

otential port conflicts.

The unified buffer interface describes the observed behavior of the memory at its interfaces, in

erms of the operations in the original program. The unified buffer does not specify the internal

mplementation of its behavior and can be used to map to different hardware backends. Only ex-

ernally visible scheduling and binding decisions are expressed. Crucially, unified buffers omit the

hysical capacity of the memory and the physical mapping of data to locations in memory. Thus, it

s a precise specification in terms of familiar data structures for a compiler—the sets and relations

f the polyhedral model—and leaves the architects considerable room to optimize the design. Next,

e describe how we implemented this interface to design a high-performance, programmable push

emory for image processing and machine learning applications.

 PHYSICAL UNIFIED BUFFER

y creating a clear interface between the compiler and the underlying hardware, the unified buffer

bstraction gives the hardware architect the freedom to explore a design space of physical buffers

hat implement this interface to find one that is both area and energy efficient. To explore the
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

Unified Buffer: Compiling Image Processing and Machine Learning Applications 26:7

Fig. 4. A common physical buffer implementation with a dual-port SRAM. Two IterationDomain (ID) mod-

ules each drive an AddressGenerator (AG) and a ScheduleGenerator (SG) to orchestrate writes to and reads

from the memory. The output has a multiplexer for memory chaining.

h

a

fi

3

T

c

(

m

m

G

t

t

l

m

c

t

e

w

c

v

a

A

A

t

w

a

t

r

t

3

W

p

t
ardware design space, we have created a flexible physical buffer hardware generator. We look at

 few hardware implementations of unified buffers, each with increasing efficiency. We call our

nal optimized version the PUB.

.1 Dual-Port SRAM

he simplest hardware implementation of a unified buffer wraps a dual-port SRAM with logic that

omputes the addresses and sequences of read/write enables for the iteration domain at each port

Figure 4). Since all implementations have a finite size, the design also contains logic for chaining

ultiple physical buffers into a larger buffer.

To implement a naïve physical buffer, we place three modules at the input and output ports of the

emory. These modules are IterationDomain (ID) , AddressGenerator (AG) , and Schedule-

enerator (SG) . They provide implementations of the corresponding components on the ports of

he unified buffer abstraction. The IterationDomain module implements counters corresponding

o for loops, while the AddressGenerator and ScheduleGenerator modules implement mapping

ogic from an IterationDomain module to an address and a read/write enable for the associated

emory port.

The AG and SG modules can be described as affine functions of the iteration domain, which

an naïvely be implemented with hardware multipliers, as shown in Figure 5 (a). We can replace

he multipliers with adders by realizing that the incoming x and y values come from counters, so

ach multiplier output can be generated by a simple recurrence relation: out (i + 1) = out (i) + d ,

here delta d is the amount the multiplier output increases with each update. Furthermore, we

an reduce the required hardware to a single adder by realizing that at any update, only one loop

ariable is incrementing (and many may be reset). This means we can precompute how much the

ffine function should change when each loop increments, and we can express the affine function

 (x , y) as a state transition from iteration i to iteration i + 1 . This turns into the recurrence relation

 (x , y) i+1 = A (x , y) i + (inc y ? d y : inc x ? d x : 0), where A (x , y) 0 = offset , inc y , inc x are Booleans

hat indicate whether to increment and d x , d y are increment deltas. With this transformation, the

hole function can be implemented with one adder as shown in Figure 5 (b). Figure 5 (c) shows

n example of the relation between the strides, ranges, and deltas for a simple downsample-by-2

raversal of an 8 × 8 image. Since we only need the delta for one loop variable at a time, we only

equire a single adder and a register along with a multiplexer to increment the running address by

he delta of the outermost loop variable that is incremented.

.2 Wide-Fetch, Single-Port SRAM

hile dual-port SRAMs are often used for an FPGA or an ASIC, they are not the most efficient

ush memories for two reasons: First, dual-port SRAMs can be more than two times larger than

heir single-port counterparts for the same storage capacity while consuming 40% more energy
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

26:8 Q. Liu et al.

Fig. 5. Area optimizations in the affine function hardware for address and schedule generation with a two-

dimensional iteration domain. (a) An implementation that uses the value of the counters in the iteration

domain. (b) An implementation that embeds the address delta between loop levels. (c) An example that

shows the relationship between the strides and deltas.

Fig. 6. Diagram of a PUB with a wide-fetch single-port SRAM, AGG, and TB. Sets of ID/AG/SG controllers

control the input and output of each sub-component.

p

S

a

t

t

u

w

(

p

a

t

A

er access [33]. Second, energy per accessed byte is often lower if more data are fetched from an

RAM on each cycle [46]. Thus, in custom-designed memories, wide-fetch single-port memories

re typically used to emulate multiple ports to improve energy per access.

To emulate simultaneous reads and writes with a single-port SRAM, we create a physical buffer

hat consists of three buffers, as shown in Figure 6 . One of the buffers is a large SRAM, while

wo small buffers are placed on either side of the SRAM. The smaller buffers are implemented

sing registers/register files, and contain 8 to 16 words (two to four fetch blocks) when a four-

ord fetch SRAM is used. The small buffer between the input port and the SRAM (aggregator

AGG)) serves as a serial-to-parallel converter and the buffer between the SRAM and the output

ort (transpose buffer (TB)) serves as a transpose buffer for small blocks (4 × 4 for our design)

nd a parallel-to-serial converter. To maximize the utility of this buffer, we gave it two input and

wo output ports, the maximum a four-word-wide SRAM could support, and implemented logic to
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

Unified Buffer: Compiling Image Processing and Machine Learning Applications 26:9

s

w

i

T

T

T

a

s

s

s

t

t

o

a

r

a

a

b

h

w

4

U

(

o

s

t

i

W

s

1

p

t

y

f

upport port sharing. We instantiated an ID and AG at the select line of a multiplexer that chooses

hich port accesses the SRAM at any given time. Figure 6 (a) shows a block diagram of the physical

mplementation of a push memory with two input ports and two output ports.

The performance of this memory depends on how much of the data in the wide fetch can be used.

he design can maintain maximum performance in the common case, when the inner stride is one.

he TB also allows this structure to transpose a matrix at full rate if it is fetched in 4 ×4 blocks. 1

o make the best use of this wide access memory requires the access patterns to be vectorized to

utomatically decouple the access pattern into sub-sequences and map them onto the controllers

hown in Figure 6 . This is performed in the vectorization pass described in the buffer mapping

tage (Section 4.3). Of course, the bandwidth per port decreases when the access stride increases,

ince either the input or the output can always be streamed sequentially with inner stride = 1 . In

he worst case, the memory supports a throughput of four words every five cycles. For example,

here is one write and four reads needed for four words.

We further optimized the energy and area of our PUB by observing that the sources and sinks

f unified buffers have tightly coupled scheduling as any read from a memory ends in a write to

 downstream memory in a statically determined number of cycles. In our hardware design after

esource sharing from Figure 6 (b), we only need one schedule generator to drive reads from the

ggregator and subsequent writes to the SRAM. On the output side, this sharing is also possible, but

 delay stage must be added between the schedule for reads from SRAM and writes to the transpose

uffer since the SRAMs we use have a delay of one cycle for reads. With these optimizations, we

ave our final physical buffer design, called PUB. The PUB design uses programmable reads and

rites on a single-port SRAM with wide fetches.

 COMPILER DESIGN

sers of our system specify their applications in Halide, a high-level domain-specific language

DSL) . Halide separates the application algorithm from its schedule to isolate computation from

ptimizations in execution [40]. The algorithm specifies the computation of an output, while the

chedule specifies the order in which the computation should be performed. Our compiler divides

he problem of compiling Halide buffers to push-buffer implementations into three steps (shown

n Figure 2):

(1) Scheduling leverages the Halide scheduling system, whose scheduling language controls

loop transformations and that we extend with accelerator commands. We support a sub-

set of the Halide input language that includes stencils, tensor computations, and lookup

tables.

(2) Buffer extraction uses polyhedral scheduling techniques to turn the multidimensional it-

eration spaces of Halide loops into one-dimensional cycle times at every buffer port, thus

yielding pipeline parallelism. The same step then extracts the full specification of each

buffer port in the unified buffer abstraction, as shown in Figure 3 .

(3) Buffer mapping maps the abstract unified buffers to physical buffers built from low-level

hardware primitives based on the chosen compiler target.

e chose to keep the Halide scheduling language for tiling instead of placing it in the second

tep (like the PLUTO scheduling algorithm [3]). The reason is that a high-quality, general-purpose
 For a transpose, the SRAM is fetched in column order, where each fetch returns a short row of four elements. This access

attern fetches four stacked rows from the memory. The output port then reads the first element of each row, outputting

he first column, and then the three other columns, before the next set of rows are fetched. When this inner loop completes,

ou have written the first four columns into the destination memory, and the outer SRAM loop moves to the next set of

our columns.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

26:10 Q. Liu et al.

Table 2. Halide Code Supported by Our Compiler Toolchain

Use case Halide algorithm code Support? Memory data Write Address Read Address

Affine indexing out(x) = in(2*x) +
5 * x

Yes Data dependent Affine Affine

Stencil taps taps(x) = 1;
taps(1) = 2;
out(x) =

∑ 2
i= 0 taps(i)*

in(x+i)

Yes Constant Constant Constant

Lookup table lut(x) = max(512, x*x);
out(x) = lut(in(x))

Yes Constant Constant Data dependent

Non-affine
indexing

out(x) = in(x*y) No Data dependent Affine Non-affine

Histogramming out(bin(x)) + = 1 No Data dependent Data dependent Data dependent

Italicized fields are not supported by our system.

t

b

s

t

4

W

t

s

d

s

p

a

u

p

l

s

e

a

c

s

b

t

e

o

d

e

s

t

a

t

A

iling algorithm for all dense linear algebra applications has not yet been found. As a result, we

elieve tiling is best left to either performance experts through a scheduling language or to domain-

pecific search procedures such as Reference [51]. Thus, we limit our use of polyhedral techniques

o memory analysis and semantic-preserving loop fusion.

.1 Scheduling

e extended the Halide scheduling language, which lets users define loop tiling but has no no-

ion of push memories, to include commands to designate the portion of an application that

hould be placed on the accelerator. Figure 2 shows an example. The placement is done by

efining the accelerator output with hw_accelerate and each of the accelerator inputs with

tream_to_accelerator . After loop tiling, the user can designate the buffers that should become

ush memories, as opposed to fused with adjacent kernels, by using store_at and compute_at ,
long the lines of Reference [39]. Users can create a memory hierarchy by using the Halide sched-

ling directive in on buffers. Finally, the user can use unroll to designate that loops should be

arallelized spatially as opposed to executed iteratively. After these scheduling directives, all fol-

owing optimizations and mapping are performed automatically without user input.

Limitations to Addressing. The Halide frontend is used to specify our application, but our

ystem does not handle some parts of the Halide language. Our compiler represents memory op-

rations with three parts: memory read address, memory write address, and memory data. By an-

lyzing these parts of a memory statement, we are able to classify which memory statements we

an optimize, which statements are supported by our PUB hardware implementation, and which

tatements are not. Halide and our abstraction can express all of these different statements, but our

ackend compiler optimizations and hardware implementation handle a subset. Modifications to

he mapper or hardware could enable and further optimize more of these use cases. Table 2 shows

xamples of supported and unsupported statements.

Our address controllers for PUB only handle affine expressions of index variables. During mem-

ry categorization, some memories are identified as unsupported if their indexing is data depen-

ent or contains non-affine indexing. Our compiler identifies unsupported cases and throws an

rror that no mapping support exists for these memory operations. The fourth use case in Table 2

hows an unsupported example where the read address is non-affine. Histogramming is shown in

he last row where the write addresses are data dependent, which is not supported. Data-dependent

ddressing introduces read-after-write dependencies that are not statically known, which require

he compiler to be careful and conservative during scheduling. Non-affine expressions require the
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

Unified Buffer: Compiling Image Processing and Machine Learning Applications 26:11

h

s

p

t

s

a

a

f

A

t

c

3

b

c

n

s

s

m

m

o

u

4

T

e

o

o

v

a

u

a

i

w

o

c

(

s

d

p

p

d
ardware to increment the address by a non-constant stride. Both of these cases are currently not

upported by our compiler and hardware.

A special, supported case of data-dependent addresses is for a memory that holds constant,

recomputed values. These include constant arrays and lookup tables as shown in the second and

hird use cases of Table 2 . Stencil taps to a Gaussian filter are known statically during compile time,

o we can preload them into registers. Another variant is where the read address is data dependent,

lso known as a lookup table. Our compiler analyzes the memory indices and memory values

nd identifies these cases. Lookup tables are precalculated with values and placed into memories

unctioning as basic SRAMs where the read address is connected to the data-dependent calculation.

Multiple Updates. One feature of Halide is multiple update statements to a single memory.

 single memory can have values stored, and then particular addresses can be modified multiple

imes. For example, a memory could be initialized to store a constant, mem(x , y) = 10 ; then one

olumn could be updated to a new value, mem(x , 1) += in(x) ; and another update, mem(2 , y) +=
 . We choose to support only a single update statement for each memory in hardware so that

asic accumulation is possible. Further updates are translated into their own memories, effectively

onverting the computation into a static single-assignment form.

One optimization for multiple updates is fusing unrolled reductions into a single statement. Our

aive decision to use a memory for every update would result in a memory created for each update

tage. Thus, a 3 × 3 convolution would have nine memory temporaries. Instead, we optimize this

eries of reduction statements, such as a series of adds, to a single statement. This effectively

inimizes the number of memories by combining all of the compute kernels.

After these compiler passes and checks, the Halide compiler separates the Halide IR used for

emories from the IR used for computation. The compute kernels are represented as graphs of

perators and are used during the finishing steps. Meanwhile, the IR for memory operations is

sed for buffer extraction.

.2 Buffer Extraction

he buffer extraction step analyzes the Halide IR to turn both loops and arrays into push memories

xpressed using the unified buffer abstraction. That is, Halide programs describe computation as

perations on arrays over iteration domains defined by index variables. To compile the arrays to

ptimized push memories, buffer extraction analyzes array reads and writes to trace movement of

alues through memories. It then uses this information to distribute the control flow across the

ddress generators in the push memories themselves.

Each static read from or write to a Halide buffer is given a unique port on the corresponding

nified buffer. For each port, buffer extraction then computes an iteration domain, an access map,

nd a schedule. The iteration domain is the Cartesian product of the bounds of the loops surround-

ng the buffer access in the Halide IR and the access map is the buffer access expression. The main

ork of unified buffer extraction, however, is computing the cycle-accurate schedule that maps

perations in the Halide program to the cycle times when they will happen in hardware.

Our cycle time scheduler exploits pipeline parallelism in two broad classes of workloads: sten-

il pipelines from image processing and coarse-grained pipelines from deep neural networks

DNNs) . Classical image processing applications, such as Harris corner detection, consist of many

tencil operations that each produce pixels from small windows of input pixels. No single stage

ominates the total compute cost and every pixel in a given stage depends on a small number of

ixels in prior stages, making it cheap to create dedicated hardware for executing each pair of

roducer and consumer stages in parallel.

In DNNs, however, a single stage containing a large compute unit, such as a systolic array,

ominates the compute cost of the application. Furthermore, values produced by that stage depend
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

26:12 Q. Liu et al.

Fig. 7. During unified buffer extraction, the compiler chooses one of two schedulers based on temporal

utilization of the compute hardware: either a stencil scheduler (left) or a coarse-grained scheduler (right).

Each op corresponds to a buffer store and a set of loads.

o

c

r

i

t

p

e

i

l

i

b

a

s

p

1

p

t

g

t

u

i

H

o

d

p

b

t

A

n large number of values from prior stages, making it expensive to parallelize across stages. We

reate pipeline parallelization for both stencils and DNNs using line buffers and double buffers

espectively.

The buffer extraction detects these two pipeline types separately. Then it selects the schedul-

ng policy with a simple rule: If the most compute intensive stage in the pipeline can achieve full

emporal utilization after loop fusion, then it uses a scheduling strategy that is tailored to stencil

ipelines, which produces schedules that can be implemented efficiently using line buffers. Oth-

rwise, if none of the stages can fully occupy the computation hardware after loop fusion, then

t uses an algorithm tailored to the DNN-style pipeline, which uses coarse-grained pipeline paral-

elism and double buffering to maximize utilization of the most expensive compute unit, as shown

n Figure 7 . Both policies use the polyhedral analysis tool ISL [47] to compute data dependencies

etween operations and to solve the optimization problems used in formulating the schedule.

Stencil Pipeline. If the pipeline is classified as a stencil pipeline, then we apply the scheduling

lgorithm described by Huff et al. [15]. This algorithm produces a cycle-accurate schedule in two

tages. First, it fuses all loop nests in the application into a single perfect loop nest. Then it com-

utes a cycle-accurate schedule for the fused, perfect loop nest at an initiation interval of one (II =

). The fusion is done incrementally, from the outermost loop level to the innermost. The fusion

rocedure uses an SDF-style constraint problem to set the relative rate and delay of each opera-

ion in a way that makes dependence distances as small and uniform as possible. To be specific, a

lobal schedule is constructed with the constraint that the start of a statement must happen after

he latest end time among all of its producer statements. The end time of a statement is calculated

sing the start time, the latency of memory loads, the latency of memory store, and the latency of

ts computation. This is demonstrated in the following equations:

St art (stmt) > End (prod) ∀ prod ∈ stmt ′ s prod uce rs , (1)

End (stmt) = St art (stmt) + L m em _ ld + L m em _ st + L c omp u te _ ke rne l . (2)

Once fusion is finished, we compute a cycle-accurate schedule for the loop nest using a standard

igh level synthesis (HLS) loop scheduler [56], which sets the II of every outer loop and delay

f all operations in the innermost loop. Once the schedule is set, each unified buffer behavior is

efined on its ports and the capacity is sized so that each pixel can be store until needed.

Coarse-grained Pipeline. The DNN buffer extraction creates a schedule for a double-buffered

ipeline. This pipeline is coarse grained: Operations on one tile of an image proceed sequentially

ut are overlapped with operations on the next tile of the image. So, for example, while a compu-

ation is being performed on a tile that has already been loaded onto the accelerator, the next tile
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

Unified Buffer: Compiling Image Processing and Machine Learning Applications 26:13

i

f

l

p

p

i

l

s

t

t

r

I

e

s

a

p

g

p

l

o

4

W

d

t

p

i

t

fi

p

t
s being loaded onto the accelerator. Buffer extraction first identifies the overlapping tile loops to

orm the coarse-grained pipeline. It then walks from the root of the program inward and collects

oop nests up to and including the innermost loop whose body is not a single perfect loop. These

erfectly nested loops form the outer coarse-grained pipeline. We refer to the operations inside the

ipeline as pipeline stages, but these stages are themselves typically extracted from loop nests. For

nstance, in the coarse-grained pipeline pseudo code shown in Figure 7 , the outer coarse-grained

oop, for loop on line 1, is pipelined and it contains three pipeline stages.

With the coarse-grained pipeline loops selected, the buffer extraction creates a cycle-accurate

chedule for each pipeline stage using the same scheduler as for the stencil pipeline. It then creates

he coarse-grained pipeline by laying out each pipeline stage sequentially and setting the initia-

ion intervals (IIs) of the coarse-grained pipeline loops to the sequential execution latency. We

efer to this as sequential scheduling.

Next, the compiler applies double buffering to achieve better throughput, which reduces the

Is of the coarse-grained pipeline loops to the latency of the most compute-intensive stage. For

xample, the latency of operations in the DNN pipeline in Figure 7 are 2, 4, and 2 cycles, so the

chedule has a coarse-grained pipeline with II = 4 . A standard HLS loop scheduler uses for loops

s boundaries of pipelining. Nested and imperfect loops at the boundary will result in redundant

ipeline flush stages at the end of each loop [39 , 52]. The same reasoning applies to our coarse-

rained pipeline. To reduce this extra latency in DNN pipelines, buffer extraction applies loop

erfection and loop flattening. Loop perfection pushes all coarse pipeline stages under one for
oop with if guards, and loop flattening merges all loops above the coarse-grained pipeline into

ne single, merged loop.

.3 Physical Buffer Mapping

ith scheduling finished, all operations have been assigned to unstalled clock cycles (one-

imensional affine schedules), and the bandwidth of each memory is known. The next task of

he compiler is to map the abstract unified buffers to implementations built out of the available

hysical primitives. This mapping produces the configuration bits for each physical buffer used

n the design. In principle, the unified buffers can be mapped directly to physical buffers on the

arget accelerator. In practice, however, this is rarely possible for the following reasons:

• Limited buffer bandwidth. The physical buffers on the accelerator may not have suffi-

cient bandwidth. For example, our PUB only has a single four-word-wide SRAM in each

physical buffer, meaning that each buffer can support at most four memory operations

per cycle. However, the unified buffer from our brighten example performs five memory

operations per cycle, and many image processing patterns need even larger bandwidth.

• Wide fetch width. The accesses in the Halide program may have a bitwidth that is nar-

rower than the bitwidth of the underlying SRAMs. For example, accesses to the four-word-

wide SRAM in the physical buffers we built are done in vectors of four 16-bit integers, with

four-word data vectors buffered in the aggregator and the transpose buffer between writes

and reads to the SRAM.

• Limited buffer capacity. The cycle-accurate scheduler reduces storage requirements by

bringing the consumer closer to the producer, but unified buffers may need more space

than any single physical buffer.

Shift Register Optimization and Banking. To address the need for high bandwidth, each uni-

ed buffer must be broken into multiple smaller unified buffers to increase the number of memory

orts. Our compiler uses two strategies for servicing high bandwidth accesses: shift register op-

imization and banking. Shift register optimization is possible whenever the dependence distance
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

26:14 Q. Liu et al.

Fig. 8. Transformations applied to map abstract unified buffers (Ubuf) to physical buffers (SR: Shift Register,

AGG: Aggregator, TB: Transpose Buffer, MEM: memory tile).

(

t

p

p

t

t

c

w

f

a

b

i

s

n

b

a

p

f

s

t

s

n

g

fi

t

a

s

d

A

delay) between a port (the source) and another (the destination) is constant and the set of values

hat appear on the source is a superset of the values that appear on the destination. Our compiler

erforms an exhaustive shift register analysis that finds all opportunities to convert memory out-

ut ports into ports driven by shift registers fed from fewer memory ports. For instance, according

o Figure 3 , the buffer feeding the 2 × 2 blur kernel has four output ports, whose dependence dis-

ances to the input port are 0, 1, 64, 65 respectively. As shown in Figure 8 (a), these three delays

an be implemented with two shift registers and a physical buffer that delays by 64 cycles.

After shift register optimization, the remaining ports must be serviced from banks of memory

ith address generators (Figure 8 (b)). Our compiler uses a version of an optimal banking algorithm

or stencil computations [9]. It first groups the ports with overlapping schedules, meaning they

ccess the buffer at the same time. If they access different parts of the buffer, then our compiler

anks the memory, meaning it splits the memory into sub-memories dedicated to each port. This

ncreases bandwidth over having the ports take turns reading. The compiler does the memory

plitting by comparing the access maps of the ports to determine the block of the buffer that each

eeds. These blocks then become the banks. If the compiler cannot find a partition, then it falls

ack to exhaustive banking by creating a bank between each pair of input and output ports that

ccess the same data.

Vectorization. To make efficient use of physical buffers with wide-fetch SRAMs, the access

atterns of the buffers must be broken into sub-sequences with the same length as the SRAM

etch width as shown in Figure 8 (c). At each input port of the buffer, this sub-sequence is assembled

erially by the AGG. Once the aggregator is full, the sub-sequence is written to the SRAM. When

he TB at an output port is empty, it receives a new sub-sequence from the SRAM, which it then

ends out serially on the output port.

We can think of the introduction of the AGG, SRAM, and TB components as strip-mining the in-

ermost loops of the original program and adding wide fetch-width loads and stores. The compiler

enerates the access maps and schedules at the SRAM ports and records them in the abstract uni-

ed buffer. It also adjusts the schedules of aggregator-SRAM and SRAM-transpose buffer transac-

ions to minimize the storage requirement in the AGG and TB while respecting data dependencies

nd hardware resource limitations.

As mentioned in Section 3.2 , when utilization of fetched words is too low, the buffer will be

cheduled so that its overall rate is reduced. The transpose buffer keeps a local storage that helps

uring transposes, but cannot alleviate applications that have no locality.
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

Unified Buffer: Compiling Image Processing and Machine Learning Applications 26:15

Table 3. Halide Applications Used in the Evaluation Section

Application Type Description

gaussian stencil 3 × 3 convolutional blur

harris stencil Corner detector using gradient kernels and non-maximal suppression

upsample stencil Up sampling by repeating pixels

unsharp stencil Mask to sharpen the image

camera stencil Camera pipeline with demosaicking, image correction, and tone scaling

laplacian stencil Gaussian and Laplacian pyramid with three levels

resnet DNN ResNet layer using multi-channel convolution

mobilenet DNN MobileNet layer using separable, multi-channel convolution

gemm DNN General matrix multiplication

t

b

a

M

m

C

o

p

t

w

a

v

i

O

W

c

p

e

i

f

5

T

c

c

p

f

W
Address Linearization. The access pattern in the unified buffer abstraction supports an arbi-

rary number of data dimensions, but a physical buffer requires the N-dimensional addresses to

e converted to a single dimension. So, an inner product is applied between each N-dimensional

ddress � a and an offset vector � o that encodes the memory layout: MEM [a 0 , a 1 , . . . , a N−1] →
EM [Σi a i · o i] .
Chaining. To map unified buffers with higher capacity than any one physical buffer, buffer

apping chains several buffers into a single logical buffer (Figure 8 (d)). Each memory tile on the

GRA is assigned a unique tile ID. Our compiler statically analyzes the access map and the schedule

f the unified buffer and partitions the access map into pieces implemented by multiple chained

hysical buffers. The following equations transform a logical address a in the access map into a

ile ID and a physical address in the memory tile, using the capacity C of the memory tile:

TileID (a) = floor (a/C) PhysicalAddress (a) = a mod C .

Memory Hierarchy. Constructing a memory hierarchy involves copying from a unified buffer

ith a large capacity to a smaller unified buffer. On our CGRA, we refer to the large, outer memory

s the global buffer, while the smaller ones are called memory tiles. The global buffer uses ready-

alid signaling to connect to the processor’s memory system, and will stall the execution engine

f a block of data has not been loaded before the time it needs to be pushed to the memory tiles.

ur unified buffer abstraction is agnostic to the memory hierarchy level until the mapping stage.

e thus carry hierarchy information downstream until hardware mapping where we generate the

orrect configuration for each physical memory primitive.

Finishing Steps. After we have finished generating the configuration information for all the

hysical buffers, we map the compute kernels produced by the Halide frontend to processing

lements (PEs) on the CGRA. We place and route (PnR) this mapped graph of PEs and phys-

cal buffers on the CGRA following standard multi-stage optimization by performing global PnR

ollowed by detailed PnR to obtain the final configuration bitstream.

 EVALUATION METHODOLOGY

o evaluate our compiler, we use it to compile the applications listed in Table 3 to CGRAs and

ompare the resulting performance to a Zynq UltraScale+ 7EV FPGA. The applications span sten-

il operations in image processing and tensor operations in deep neural networks as found in

revious Halide scheduling papers [1 , 32]. To generate an FPGA bitstream, our compiler trans-

orms the buffers in each Halide application into unified buffers and applies all optimizations.

e build upon the work by Huff et al. [15] to generate synthesizable C code that we feed into
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

26:16 Q. Liu et al.

Fig. 9. Our CGRA is a 16 × 32 array of PE and MEM tiles. One-fourth of the tiles are MEMs and the rest are

PEs. The memory tile contains the optimized PUB described in Section 3.2 depicted in Figure 6 (b).

V

a

s

t

w

f

a

t

s

t

t

b

o

d

g

C

i

6

U

m

T

m

a

d

t

d

6

T

i

t

A

itis HLS. Our system generates identical synthesizable C as Huff et al., which compares favor-

bly to other competitive DSL-FPGA systems [15]. The HLS output is fed into Xilinx’s Vivado

ystem that synthesizes, places, and routes the resulting design at 200 MHz. We use Vivado [50]

o report resource consumption, energy use, and performance.

Our CGRA, shown in Figure 9 , resembles an island-style FPGA, with LUTs replaced by PE tiles

ith 16 bit integer/floating-point ALUs, and BRAMs replaced by memory (MEM) tiles with dif-

erent unified buffer implementations, including our optimized PUBs. The CGRA is embedded in

 full system-on-chip. It directly connects to a large multi-banked, double-buffered memory called

he global buffer. The global buffer has 16 banks; each bank is 256 kB and connects to a different

ection of the top edge of the CGRA. The data tiles required by the CGRA are first brought into

he global buffer and then streamed into the CGRA. This allows computation on the current tile in

he CGRA to be overlapped with the movement of the next tile into the global buffer. The global

uffer provides deterministic access latency to the CGRA and hides the non-deterministic latency

f the main memory. When targeting the CGRA, our compiler outputs a logical description of the

esign that is fed into custom mapping, placement, and routing tools designed for this CGRA. To

enerate power and area numbers, we created a complete Verilog design of the CGRA and used

adence Genus and Innovus tools to synthesize, place, and route the MEMs and PEs of the CGRA

n a 16-nm technology at 900 MHz. Power numbers are extracted from gate-level simulations.

 EVALUATION

sing the unified buffer abstraction throughout the compilation process allows our compiler to

ap to many different implementations, ranging from FPGAs to our CGRAs with optimized PUBs.

his is detailed in Section 6.1 . Section 6.2 then uses this flexible backend to evaluate the perfor-

ance gains by moving to a better physical memory implementation. This separation also allows

ll implementations to benefit from compiler optimizations that can improve the design by an or-

er of magnitude as shown in Section 6.3 . Finally, Section 6.4 shows that the capability to compile

o coarse-grained accelerators is important, since our system is many times better than the same

esign mapped to an FPGA.

.1 Backend Portability

he unified buffer abstraction enables our compiler to map to a broad set of physical memory

mplementations, as shown in Table 4 . By keeping all of the application data stream information

ogether, our backend can select the data it needs to configure the target hardware. Figure 10
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

Unified Buffer: Compiling Image Processing and Machine Learning Applications 26:17

Table 4. The Characteristics of our PUB Memory Primitive and Alternative Memory Implementations

Memory Backend PUB (ours) DP-SRAM + AG DP-SRAM + PEs Ready-valid (Buffet) BRAM + LUTs

SRAM Macro SP DP DP DP DP

Built-in AG Yes Yes No No No

Control Protocol Static Static Static Ready-valid Static

Accelerator Architecture CGRA CGRA CGRA ASIC FPGA

Unified Buffer (ours) � � � � �

Vivado HLS [50] ✗ ✗ ✗ ✗ �

SODA [6] ✗ ✗ ✗ ✗ �

PolyEDDO [35] ✗ ✗ ✗ � ✗

Our compiler, using the unified buffer abstraction, supports more memory implementations as compared to FPGA com-

pilers and other accelerator compilers.

Fig. 10. Compilation process targeting different memory backends.

s

c

i

s

b

u

i

F

g

a

g

t

o

m

s

t

i

s

e

2

m

ketches the compilation process, denoting the classes of hardware our system can target. Our

ompiler first transforms the buffers in the Halide IR into unified buffers and applies optimizations

ncluding shift register optimization and banking to get the optimized unified buffers. These steps

chedule all operations on the buffers, creating the addressing and scheduling information. The

uffer mapping code generation separates into two different backends: one for generating config-

rations for CGRAs and one for targeting FPGAs. For FPGAs, the buffer specification is converted

nto C-loops that are then fed into an FPGA HLS tool to map the design onto BRAMs + LUTs .

or CGRA targets, the buffer ports are connected to the hardware kernels forming an application

raph that is then mapped onto the CGRA.

Our compiler encounters a divergence point in the CGRA backend based on whether controllers

re pre-built into physical buffers. If the buffers do not contain controllers, then the compiler will

enerate the controllers needed for the specific stream pattern each buffer requires. These con-

rollers are then added to the non-memory part of the application graph that is mapped into PEs

n a CGRA. This part of the compilation covers machines that have simple dual-ported (DP)

emories as physical buffers, DP-SRAM+PE , as well as more complex memories like buffets

hown at the bottom right of Figure 10 . A buffet [36] is a more sophisticated buffer implementa-

ion that tracks data dependencies between the read and write ports, and supports a ready-valid

nterface. Since the ready-valid protocol with dependency checking maintains almost all of the

cheduling constraints, 2 when mapping to buffets, our compiler does not create a schedule gen-

rator and drops most of the cycle-level scheduling information. Of course, using these memories
 A few constraints remain. For example the shift-register technique to reduce memory ports needs to be carefully imple-

ented in a ready-valid system.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

26:18 Q. Liu et al.

Table 5. Total Memory Area and Energy for a 3 × 3 Convolution Using Different Implementations of the

Physical on-chip Storage

References

MEM Area

(μm

2)

SRAM

Area (%)

MEM Energy

(pJ/access)

SRAM

Energy (%)

Buffet 3 [36] 14.3k 86 3.9 84

DP SRAM + PEs [2 , 29] 31.1k 40 4.8 70

DP SRAM + AG [21 , 38] 16.7k 74 3.6 92

4 Wide SP SRAM + AGG +

TB + AGs

Ours 13.7k 42 2.5 61

Both area and energy decrease as we specialize the physical buffer. Total area and energy include control logic and address

generation except for buffet.

r

w

d

t

b

a

i

d

t

a

6

W

C

c

o

P

a

p

b

P

T

b

a

s

T

i

p

a

3

a

A

equires that all the PEs in the CGRA support ready-valid ports. Adding this support to our CGRA

as the major change needed to support buffets.

If the controllers are built into the physical buffers, then the compiler configures the embed-

ed controllers to implement the stream access patterns on all of its ports. This path is taken for

he physical buffers described in Section 3 , DP-SRAM+AG and PUB , which are the left bottom

ranches of Figure 10 .

Different from the previous compilers for reconfigurable hardware listed in Table 4 that target

 specific architecture backend, the unified buffer abstraction separates the compiler frontend and

ts optimization machinery from the implementation details of different memory backends. This

esign allows it to target multiple memory backends on reconfigurable accelerators with little

arget-specific code. It also opens the opportunity to separately optimize the compiler frontend

nd the memory backend.

.2 Hardware Optimization Case Study

e leverage our flexible backend to compare different approaches for physical buffer design on a

GRA. There are two major ways to build on-chip storage [37]: You can either use reconfigurable

ompute units to do both computation and address generation [2 , 29] (DP-SRAM + PEs and buffet)

r you can include address generators in the memory components [21 , 38] (DP-SRAM + AG and

UB). Comparing the second row with the third row of Table 5 shows that even for a simple

pplication, it is more efficient to use embedded address generators than to use the PEs on the target

latform. Adding this logic to a dual-port 2048 × 16 bit SRAM (Figure 4) reduces the total unified

uffer area by 46% and energy by 25% compared to implementing the addressing and control on

Es. We achieve further improvements by replacing the DP SRAMs with single-port (SP) SRAMs.

he area of the dual-port 2,048 × 16 -bit SRAM is around 2 . 5 × larger than a single-port 512 × 64 -

it SRAM with the same capacity. Thus, as the fourth row of Table 5 shows, even with the extra

ggregation and transpose logic, using a wider single-port SRAM results in a buffer that is 18%

maller and consumes 31% lower energy than the best dual-ported version.

We synthesize a buffet implementation with the same dual-port 2,048 × 16 -bit SRAM macro.

he SRAM area proportion is lower than what is reported by Pellauer et al. [36] due to the added

nterconnect needed for CGRA reconfiguration. Although the buffet controller takes a smaller

roportion of area, its function is only equivalent to the schedule generator in our PUB controllers

nd does not contain the address generation capability. Even if we ignore the missing address
 Since a buffet does not have an address generator in its design, the area and energy shown in the table do not include

ddress generation.

CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

Unified Buffer: Compiling Image Processing and Machine Learning Applications 26:19

Table 6. Memory Usage and Latency Comparison between Different Physical Memory Implementations

of memories PUB (ours) DP+AG Buffet

upsample 1 2 2

gaussian 1 2 6

harris 5 11 23

resnet 80 80 80

Latency (cycles) PUB (ours) DP+AG Buffet

upsample 16399 16383 16401

gaussian 4095 4095 4100

harris 4095 4095 4139

resnet 9807 8739 8751

Fig. 11. Comparison of area usage for different memory implementations with stacked bars divided into

MEM addressing and control area, MEM SRAM macro area, and PE area used for computation. Four dif-

ferent implementations of a physical buffer are evaluated: (1) a DP SRAM with unmodified PEs for address

generation, (2) a DP SRAM with PEs optimized for address generation, (3) a DP SRAM with optimized ad-

dress generator (AG), and (4) our final PUB with a single-port SRAM with fetch width of 4, AGG, and TB

each with their AGs.

g

a

f

p

r

g

p

d

i

c

fi

o

s

s

F

e

t

F
enerator, our PUB memory is smaller and more area efficient. Using more complex controllers

nd single ported memories seems to be the best strategy for building physical buffers.

The advantage of the PUB implementation is even larger than Table 5 indicates. Our PUB’s

our-word-wide fetch allows it to support two input ports and two output ports, which double the

eak read/write bandwidth compared to the dual-port memories. As shown in Table 6 (left), PUB

equires fewer physical buffers for all applications besides resnet.

While using wide-fetch memories has many benefits, it also has some costs. It requires the

enerated schedules to be padded to align with the fetch width. As shown in Table 6 (right), this

adding usually does not affect the latency, but can have a modest effect if the size of some of the

ata blocks is small, as it is in resnet.

Finally, we map nine applications to three CGRA architectures with different physical buffer

mplementations and evaluate their total area. To map to the memory backend without address

ontrollers, we generate the controllers using PEs based on the number of dimensions in the uni-

ed buffer schedule. In our unoptimized version (1), we make no modifications to the PEs. In the

ptimized version (2), an operator for a counter is added to the PE; this change saves 67% area. As

hown in Figure 11 , using dedicated AG logic in the dual-port memory tile lets PEs be used exclu-

ively for computation. Note that these area savings occur while the throughput stays the same.

urthermore, using a wide, single-port SRAM with more external ports saves silicon area, while

xpanding functionality. Both of these properties lead to an average 2.2 × less total area needed

o implement the same application as compared to DP + optimized PEs. From the breakdown in

igure 11 , SRAM macro area reduces 3.3 times, and memory controller area reduces 4.5 times,
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

26:20 Q. Liu et al.

Fig. 12. Execution time versus resource utilization tradeoff by using Halide’s scheduling. At high unrolling

factors, designs do not fit on the CGRA (384 PEs, 128 MEMs); this is indicated on the charts by the red shaded

regions.

Fig. 13. Ablation study of the effectiveness of coarse-grained loop optimizations. For ResNet layers, compute

occupancy increases as double buffering (DB) and loop optimizations (LO) are added. A dual-port memory

leads to even higher compute occupancy.

w

w

c

o

o

6

R

a

a

F

i

t

T

c

d

F

a

1

C

p

t

A

hile PE area remains the same. The area savings are even greater in deep learning applications,

hich are memory intensive.

This case study shows the importance of building physical buffers with efficient and customized

ontrollers that can extract the most performance out of each memory macro. Performing these

ptimizations yielded a physical memory implementation that is half the area and energy of the

riginal design.

.3 Evaluation of Compiler Optimizations

einterpreting Halide Schedules for Dataflow Architectures. Halide provides the user with

 language where scheduling primitives are used to explore a design space. As users, we can cre-

te Halide schedules to explore the tradeoff between reducing latency and using more resources.

igure 12 shows how the system performance scales when Halide’s unroll scheduling primitive

s reinterpreted to create parallel compute hardware. The execution time decreases linearly on

he log scale, which means our designs scale well for execution time as more resources are used.

he number of MEMs used decreases at very high unroll factors (16 for gaussian and harris) be-

ause our compiler replaces line buffers having fewer than 20 words with register chains. Each

esign eventually fails to map to our target CGRA when it exceeds 384 PEs or 128 MEMs (in

igure 12 , designs that exceed available resources are shaded in red). Based on this investigation,

n application designer would use an unroll factor of 16 for gaussian, 3 for harris, 3 for unsharp,

6 × 8 for resnet, and 8 × 8 for gemm to fully utilize our target CGRA.

Coarse-grained Loop Optimizations. We map all eight ResNet convolutional layers to our

GRA. Each layer is properly blocked with eight input channels and eight output channels com-

uted in parallel. Our compiler then schedules the execution of each layer using the loop optimiza-

ion describe in Section 4.2 . As shown in Figure 13 , we compare three versions of the coarse-grained
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

Unified Buffer: Compiling Image Processing and Machine Learning Applications 26:21

Table 7. Shift Register Optimization Replaces Memory Tiles with Registers or Wires

Original MEMs MEMs after optimization Savings (%) Registers added

gaussian 9 1 89% 6

harris 67 5 93% 30

unsharp 66 6 91% 40

camera 158 25 84% 26

resnet 136 81 40% 0

p

u

c

l

m

T

l

e

a

t

w

t

d

o

t

c

m

6

T

o

t

F

w

e

i

F

p

a

a

i

c

e

7

C

b

ipeline schedules based on compute occupancy, which is the proportion of time that the PEs are

tilized. Compared to the sequential scheduling baseline, double buffering significantly increases

ompute occupancy by overlapping data transfers with computation. Applying loop flattening and

oop perfection increases the compute occupancy by around 10%. Notice that this optimization is

ore effective for the early layers in the DNN where the feature maps have larger spatial sizes.

iling the width and height of the input feature maps creates an overhead from extra nested tiling

oops. The loop optimizations remove this overhead. While the 4-wide memories help with energy-

fficiency, we also see that they hold occupancy back by approximately 10% as compared to using

 dual-port RAM with a fetch width of 1. As mentioned in the prior section, the memory needs

o wait for extra cycles while fetching useless data when the data do not align properly in the

ide-fetch memories.

Shift Register Optimization. Another optimization we perform is the shift register optimiza-

ion to reduce memory tile usage. As described in Section 4.3 , memories with a small dependency

istance between read and write can be replaced with registers or wires. Table 7 shows how many

f the memories are replaced compared to the naïve implementation. In stencil applications, regis-

ers are used to reuse the adjacent pixels in stencil windows. In ResNet, data from the same input

hannel is reused by compute for different output channels in parallel. Instead of duplicating input

emories, this optimization instantiates a single memory and broadcasts values.

.4 System Level Evaluation

he unified buffer abstraction lets us successfully compile a wide range of applications in Table 3

nto a CGRA. Having the same compiler generate code for both CGRA and FPGA enables us

o fairly measure the energy efficiency benefit of our CGRA architecture. Although we use the

PGA code generated by our own compiler as the baseline, our FPGA backend is based on Huff’s

ork [15], which demonstrated state-of-the-art performance against the leading FPGA compil-

rs [6].

Figure 14 shows the resulting energy/operation consumed. The more efficient unified buffer

mplementation and optimized 16 bit logic mean that the CGRA is 3 . 5 × more efficient than the

PGA. Figure 15 shows the applications’ time per pixel on the CGRA, FPGA, and a CPU. Time

er pixel is the runtime divided by the total number of output values. Our CPU comparison is

n Intel Xeon 4214 with 16.5 MB cache with a 2.2-GHz base frequency. We use the same Halide

pplication code for each backend, then validate the output images against each other. The CGRA

s able to outperform the CPU, and dominates the FPGA with 4 . 7 × faster runtimes due to its higher

lock frequency. With these comparisons, we see that the compiler optimizations coupled with an

fficient memory design lead to a competitive accelerator design.

 RELATED WORK

reating tools for application-tailored accelerators is an active area of research and our system

uilds on these ideas.
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

26:22 Q. Liu et al.

Fig. 14. Comparison of energy per operation for

running kernels on a CGRA and FPGA.

Fig. 15. Time per pixel on CGRA, FPGA, and CPU.

p

p

a

w

a

t

c

s

f

u

b

u

m

o

s

l

r

p

p

m

m

b

m

t

w

b

n

M

p

H

t

A

Compiler Frameworks. Neither conventional software compilers nor existing hardware com-

ilers are well suited to target push memories. HLS tools such as Vivado [49], LegUp [4], Cata-

ult [27], and others [17 , 24], are designed to solve scheduling and resource binding problems at

 finer granularity than those seen when compiling to push memories. Their strategy works well

hen targeting FPGAs or ASIC technology libraries, because the architectural primitives (such

s registers and LUTs) are more fine-grained than the compiler IR instructions. When compiling

o programmable push memory accelerators, where the architectural primitives are much more

oarse-grained than a typical RISC instruction, this approach does not work. Academic languages

uch as Spatial [20], HeteroCL [22], and Exo [16] provide a more abstract programming model

or accelerators, but the user must define the memory micro-architecture. Although HeteroCL

ses a unified DSL frontend to describe their memory optimization and spatial architecture, their

ackend implementation still depends on separate frameworks. Exo provides more control to the

ser to enable more performance, but with this is increased complexity with user-defined memory

anagement and accelerator functionality.

While HLS tools can translate the Halide IR directly to hardware, they do not support the mem-

ry optimizations we describe. Modern HLS tools such as Vivado HLS or Catapult HLS are well

uited to arithmetic mapping and exploiting pipeline parallelism within the bodies of individual

oops [25]. However, they perform limited memory [39] and cross-loop optimizations [57]. As a

esult, they are not good at exploiting pipeline parallelism across different loop nests in a com-

utation and require a great deal of manual effort by users to create high-quality code for deep

ipelines [22].

Push Memory Abstractions. Our unified buffer borrows from buffets [36], a buffer imple-

entation idiom with explicit decoupled data orchestration (EDDO) that can be reused across

ultiple domains. Buffets are a hardware primitive, not a compiler abstraction, while our unified

uffer is both. We improve productivity by using compiler techniques to extract, optimize, and

ap the buffers from high-level application code.

Recently a new abstraction called hierarchical space-time (HST) [35] was proposed to capture

he memory behavior of EDDO architecture and an automated analysis/code generation frame-

ork called PolyEDDO is in progress. Different from our unified buffer that stays agnostic to the

ackend hardware, HST targets the EDDO architecture that relies on buffet controller’s synchro-

ization. It is not trivial for PolyEDDO to target other memory implementations like a scratchpad.

oreover, its frontend only supports perfect loop nests, while ours can support coarse-grained

ipelines.

Some CGRA designs have proposed using PEs for calculating memory addresses [10 , 26 , 45].

owever, most systems, like Plasticine [38], create dedicated addressing units associated with

heir push memories. Spatial [20] provides a high-level programming language for Plasticine but
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

Unified Buffer: Compiling Image Processing and Machine Learning Applications 26:23

r

i

b

m

t

d

d

D

F

a

t

p

s

g

i

a

h

a

d

H

d

t

8

T

w

t

p

t

m

v

R

equires users to explicitly orchestrate data movement between different memories. SARA [55]

mproves upon the Plasticine compiler by scaling applications to utilize all hardware resources

ut leaves inter-loop optimizations to the user. Nowatzki [34] proposes a low-level programming

odel for stream dataflow accelerators. Since their memory architecture is a global scratchpad,

heir memory ISA contains dynamic scheduling that may not be suitable for accelerators with

istributed push memories.

Domain-Specific Accelerator Generators. Other work seeks to automate FPGA and ASIC

omain-specific accelerator design. Image processing accelerator generation languages such as

arkroom [13], Rigel [14], Aetherling [8], Hetero-Halide [23], HIPACC-FPGA [41], PolyMage-

PGA [7], SODA [6], and Halide-HLS [39] automatically generate FPGA implementations of im-

ge processing pipelines. These systems target either FPGAs that have large overheads or ASICs

hat are inflexible. AutoSA [48], AutoDSE [44], and Clockwork [15] are some systems that use

olyhedral analysis for scheduling, but they do not consider CGRAs.

To efficiently execute DNNs, Zhang et al. [53] optimize DNN data blocking using double buffer

tructures and synthesize a pipelined FPGA accelerator from Caffe [18]. DNNWeaver [43] also

enerates synthesizable designs automatically from Caffe, with support for more types of layer

mplementations. DNNBuilder [54] proposes a fine-grained layer-based pipeline architecture with

 line-buffer-based scheme to reduce FPGA on-chip memory usage. VTA [30 , 31] provides a full

ardware-software stack for DNN acceleration using a modified version of Halide IR. It proposes

n ISA to map DNN layers onto optimized operators on their proposed FPGA accelerator. These

omain-specific hardware generators reduce design effort when mapping a DNN to an accelerator.

owever, their frameworks heavily rely on the backend implementation. With the architectures

etermined, extending them to support new applications or more efficient hardware implementa-

ions would require significant development effort from domain experts.

 CONCLUSION

he growing importance of accelerators, and their dependence on push memories for high hard-

are utilization makes creating compilers for this abstraction increasingly important. We address

his challenge by creating a new abstraction for push memories called a unified buffer , which sup-

orts efficient hardware realization and is a tractable target for an optimizing compiler. We validate

his approach’s potential by creating a compiler that is able to efficiently map image processing and

achine learning applications onto a push memory accelerator and by creating PUB, an optimized

ersion of a physical unified buffer suitable for a CGRA.

EFERENCES

[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven

Johnson, Kayvon Fatahalian, Frédo Durand, and Jonathan Ragan-Kelley. 2019. Learning to optimize Halide with tree

search and random programs. ACM Trans. Graph. 38, 4, Article 121 (July 2019), 12 pages. DOI: https://doi.org/10.1145/

3306346.3322967

[2] Oguzhan Atak and Abdullah Atalar. 2013. BilRC: An execution triggered coarse grained reconfigurable architecture.

IEEE Trans. VLSI Syst. 21, 7 (2013), 1285–1298. DOI: https://doi.org/10.1109/TVLSI.2012.2207748

[3] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical automatic polyhedral paral-

lelizer and locality optimizer. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’08) . Association for Computing Machinery, New York, NY, 101–113. DOI: https://doi.org/10.

1145/1375581.1375595

[4] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H. Anderson, Stephen Brown,

and Tomasz Czajkowski. 2011. LegUp: High-level synthesis for FPGA-based processor/accelerator systems. In Pro-

ceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’11) . Association for

Computing Machinery, New York, NY, 33–36.
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1109/TVLSI.2012.2207748
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/1375581.1375595

26:24 Q. Liu et al.

[

[

[

[

[

[

[

[

[

[

[

[

[

A

[5] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2016. Eyeriss: An energy-efficient reconfigurable

accelerator for deep convolutional neural networks. IEEE J. Solid-State Circ. 52, 1 (2016), 127–138.

[6] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: Stencil with optimized dataflow architecture. In

Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’18) . IEEE, New York, NY,

1–8.

[7] Nitin Chugh, Vinay Vasista, Suresh Purini, and Uday Bondhugula. 2016. A DSL compiler for accelerating image pro-

cessing pipelines on FPGAs. In Proceedings of the International Conference on Parallel Architectures and Compilation .

Association for Computing Machinery, New York, NY, 327–338.

[8] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly, Gilbert Louis Bernstein, Marco Patrignani,

Kayvon Fatahalian, and Pat Hanrahan. 2020. Type-directed scheduling of streaming accelerators. In Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’20) . Association for Com-

puting Machinery, New York, NY, 408–422.

[9] Juan Escobedo and Mingjie Lin. 2018. Graph-theoretically optimal memory banking for stencil-based computing

kernels. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’18) .

Association for Computing Machinery, New York, NY, 199–208.

10] Xitian Fan, Di Wu, Wei Cao, Wayne Luk, and Lingli Wang. 2018. Stream processing dual-track CGRA for object

inference. IEEE Trans. VLSI Syst. 26, 6 (2018), 1098–1111. DOI: https://doi.org/10.1109/TVLSI.2018.2797600

11] Paul Feautrier. 1992. Some efficient solutions to the affine scheduling problem. I. One-dimensional time. Int. J. Parallel

Program. 21, 5 (1992), 313–347.

12] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J. Dally. 2016. EIE:

Efficient inference engine on compressed deep neural network. In Proceedings of the ACM/IEEE International Sympo-

sium on Computer Architecture (ISCA) . Association for Computing Machinery, New York, NY, 243–254. DOI: https://

doi.org/10.1109/ISCA.2016.30

13] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen, Steven Bell, Artem Vasilyev,

Mark Horowitz, and Pat Hanrahan. 2014. Darkroom: Compiling high-level image processing code into hardware

pipelines. ACM Trans. Graph. 33, 4, Article 144 (2014), 11 pages. DOI: https://doi.org/10.1145/2601097.2601174

14] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-Kelley, Mark Horowitz, and Pat Hanrahan. 2016. Rigel:

Flexible multi-rate image processing hardware. ACM Trans. Graph. 35, 4, Article 85 (2016), 11 pages. DOI: https://doi.

org/10.1145/2897824.2925892

15] Dillon Huff, Steve Dai, and Pat Hanrahan. 2021. Clockwork: Resource-efficient static scheduling for multi-rate im-

age processing applications on FPGAs. International Symposium on Field-Programmable Custom Computing Machines

(FCCM) . 186–194. https://doi.org/10.1109/FCCM51124.2021.00030

16] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley. 2022. Exocompila-

tion for productive programming of hardware accelerators. In Proceedings of the 43rd ACM SIGPLAN International

Conference on Programming Language Design and Implementation (PLDI’22) . Association for Computing Machinery,

New York, NY, 703–718. DOI: https://doi.org/10.1145/3519939.3523446

17] Intel Inc. 2022. Altera OpenCL. Retrieved from https://w w w.intel.com/content/w w w/us/en/software/programmable/

sdk- for- opencl/overview.html .

18] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama,

and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM

International Conference on Multimedia . Association for Computing Machinery, New York, NY, 675–678.

19] Norman Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

Bhatia, Nan Boden, Al Borchers, et al. 2017. In-datacenter performance analysis of a tensor processing unit. In Pro-

ceedings of the ACM/IEEE International Symposium on Computer Architecture (ISCA’17) . Association for Computing

Machinery, New York, NY, 1–12.

20] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi

Nardi, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: A language and compiler for appli-

cation accelerators. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI’18) . Association for Computing Machinery, New York, NY, 296–311.

21] Philipp Käsgen, Mohamed Messelka, and Markus Weinhardt. 2021. HiPReP: High-performance reconfigurable pro-

cessor - architecture and compiler. In Proceedings of the 31st International Conference on Field-Programmable Logic

and Applications (FPL’21) . IEEE Computer Society, Los Alamitos, CA, 380–381. DOI: https://doi.org/10.1109/FPL53798.

2021.00074

22] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason Cong, and Zhiru Zhang. 2019. Hete-

roCL: A multi-paradigm programming infrastructure for software-defined reconfigurable computing. In Proceedings

of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA) . Association for Computing

Machinery, New York, NY, 242–251. DOI: https://doi.org/10.1145/3289602.3293910
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

https://doi.org/10.1109/TVLSI.2018.2797600
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1145/2601097.2601174
https://doi.org/10.1145/2897824.2925892
https://doi.org/10.1145/2897824.2925892
https://doi.org/10.1109/FCCM51124.2021.00030
https://doi.org/10.1145/3519939.3523446
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://doi.org/10.1109/FPL53798.2021.00074
https://doi.org/10.1109/FPL53798.2021.00074
https://doi.org/10.1145/3289602.3293910

Unified Buffer: Compiling Image Processing and Machine Learning Applications 26:25

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

23] Jiajie Li, Yuze Chi, and Jason Cong. 2020. HeteroHalide: From image processing DSL to efficient FPGA acceleration. In

Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’20) . Association

for Computing Machinery, New York, NY, 51–57.

24] Maxeler Inc.2022. MaxCompiler. Retrieved from https://w w w.maxeler.com/products/software/maxcompiler .

25] Wim Meeus, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk Stroobandt. 2012. An overview of today’s high-

level synthesis tools. Des. Autom. Embed. Syst. 16, 3 (2012), 31–51.

26] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauwereins. 2003. ADRES: An architecture

with tightly coupled VLIW processor and coarse-grained reconfigurable matrix. In Field Programmable Logic and

Application . Springer, Berlin, 61–70.

27] Mentor. 2019. Catapult Synthesis User and Reference Manual . Mentor, Wilsonville, OR.

28] Mentor Graphics Inc. 2022. Catapult High Level Synthesis.

29] Mirsky and DeHon. 1996. MATRIX: A reconfigurable computing architecture with configurable instruction distribu-

tion and deployable resources. In Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines . IEEE,

New York, NY, 157–166. DOI: https://doi.org/10.1109/FPGA.1996.564808

30] Thierry Moreau, Tianqi Chen, and Luis Ceze. 2018. Leveraging the VTA-TVM hardware-software stack for FPGA

acceleration of 8-bit ResNet-18 inference. In Proceedings of the Reproducible Quality-Efficient Systems Tournament on

Co-Designing Pareto-Efficient Deep Learning (ReQuEST’18) . Association for Computing Machinery, New York, NY,

Article 5, 7 pages. DOI: https://doi.org/10.1145/3229762.3229766

31] Thierry Moreau, Tianqi Chen, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. VTA: An

open hardware-software stack for deep learning. arXiv:1807.04188. Retrieved from http://arxiv.org/abs/1807.04188 .

32] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and Kayvon Fatahalian. 2016. Auto-

matically scheduling Halide image processing pipelines. ACM Trans. Graph. 35, 4, Article 83 (July2016), 11 pages.

DOI: https://doi.org/10.1145/2897824.2925952

33] Vivek Nautiyal, Gaurav Singla, Lalit Gupta, Sagar Dwivedi, and Martin Kinkade. 2017. An ultra high density pseudo

dual-port SRAM in 16nm FINFET process for graphics processors. In Proceedings of the IEEE International System-on-

Chip Conference (SOCC’17) . IEEE, New York, NY, 12–17.

34] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankaralingam. 2017. Stream-dataflow accel-

eration. SIGARCH Comput. Archit. News 45, 2 (June2017), 416–429. DOI: https://doi.org/10.1145/3140659.3080255

35] Angshuman Parashar, Prasanth Chatarasi, and Po-An Tsai. 2021. Hardware abstractions for targeting EDDO Ar-

chitectures with the Polyhedral Model. In Proceedings of the 11th International Workshop on Polyhedral Compilation

Techniques (IMPACT’21) . HiPEAC.

36] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde, Rangharajan Venkatesan, Stephen

W. Keckler, Christopher W. Fletcher, and Joel Emer. 2019. Buffets: An efficient and composable storage idiom for

explicit decoupled data orchestration. In Proceedings of the International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS’19) . Association for Computing Machinery, New York, NY,

137–151. DOI: https://doi.org/10.1145/3297858.3304025

37] Artur Podobas, Kentaro Sano, and Satoshi Matsuoka. 2020. A survey on coarse-grained reconfigurable architectures

from a performance perspective. IEEE Access 8 (2020), 146719–146743.

38] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao, Stefan Hadjis, Ardavan Pedram, Christos

Kozyrakis, and Kunle Olukotun. 2017. Plasticine: A reconfigurable architecture for parallel paterns. In Proceedings of

the ACM/IEEE International Symposium on Computer Architecture (ISCA’17) . Association for Computing Machinery,

New York, NY, 389–402. DOI: https://doi.org/10.1145/3079856.3080256

39] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-Kelley, and Mark Horowitz. 2017.

Programming heterogeneous systems from an image processing DSL. ACM Trans. Arch. Code Optim. 14, 3 (2017),

1–25.

40] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.

2013. Halide: A language and compiler for optimizing parallelism, locality, and recomputation in image processing

pipelines. ACM Sigplan Not. 48, 6 (2013), 519–530.

41] Oliver Reiche, Moritz Schmid, Frank Hannig, Richard Membarth, and Jürgen Teich. 2014. Code generation from a

domain-specific language for C-based HLS of hardware accelerators. In Proceedings of the International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS’14) . IEEE, New York, NY, 1–10.

42] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller,

Alicia Klinefelter, Nathaniel Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel Emer,

C. Thomas Gray, Brucek Khailany, and Stephen W. Keckler. 2019. Simba: Scaling deep-learning inference with

multi-chip-module-based architecture. In Proceedings of the IEEE/ACM International Symposium on Microarchitecture

(MICRO’19) . Association for Computing Machinery, New York, NY, 14–27. DOI: https://doi.org/10.1145/3352460.

3358302
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

https://www.maxeler.com/products/software/maxcompiler
https://doi.org/10.1109/FPGA.1996.564808
https://doi.org/10.1145/3229762.3229766
http://arxiv.org/abs/1807.04188
https://doi.org/10.1145/2897824.2925952
https://doi.org/10.1145/3140659.3080255
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1145/3079856.3080256
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1145/3352460.3358302

26:26 Q. Liu et al.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

R

A

43] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung Kim, Chenkai Shao, Asit Mishra, and

Hadi Esmaeilzadeh. 2016. From high-level deep neural models to FPGAs. In Proceedings of the IEEE/ACM International

Symposium on Microarchitecture (MICRO’16) . IEEE, New York, NY, 1–12.

44] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2022. AutoDSE: enabling software programmers to

design efficient FPGA accelerators. ACM Transactions on Design Automation of Electronic Systems 27, 4 (2022), 27 pages.

https://doi.org/10.1145/3494534

45] Christopher Torng, Peitian Pan, Yanghui Ou, Cheng Tan, and Christopher Batten. 2021. Ultra-elastic CGRAs for

irregular loop specialization. In Proceedings of the IEEE International Symposium on High-Performance Computer Ar-

chitecture (HPCA’21) . IEEE, New York, NY, 412–425. DOI: https://doi.org/10.1109/HPCA51647.2021.00042

46] Artem Vasilyev. 2019. Evaluating Spatially Programmable Architecture for Imaging and Vision Applications . Stanford

University.

47] Sven Verdoolaege. 2010. ISL: An integer set library for the polyhedral model. In Proceedings of the International Con-

gress of Mathematical Software (ICMS’10) , Komei Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama

(Eds.). Springer, Berlin, 299–302.

48] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A polyhedral compiler for high-performance systolic arrays

on FPGA. The ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA) (Virtual Event, USA) .

Association for Computing Machinery, New York, NY, 93–104. https://doi.org/10.1145/3431920.3439292

49] Xilinx. 2019. Vivado Design Suite User Guide High-Level Synthesis . Xilinx, San Jose, CA.

50] Xilinx Inc.2022. Vivado High Level Synthesis. Retrieved from https://w w w.xilinx.com/products/design-tools/vivado/

integration/esl-design.html .

51] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven Bell, Kaidi Cao, Heonjae Ha, Priyanka

Raina, Christos Kozyrakis, and Mark Horowitz. 2020. Interstellar: Using Halide’s scheduling language to analyze

DNN accelerators. In Proceedings of the International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS’20) . Association for Computing Machinery, New York, NY, 369–383.

52] Benjamin Ylvisaker, Carl Ebeling, and Scott Hauck. 2010. Enhanced loop flattening for software pipelining of arbitrary

loop nests. Technical Report. University of Washington, Seattle.

53] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing FPGA-based accel-

erator design for deep convolutional neural networks. In Proceedings of the ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA’15) . Association for Computing Machinery, New York, NY, 161–170.

54] Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, and Deming Chen. 2018.

DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs. In Proceedings

of the International Conference on Computer-Aided Design (ICCAD’18) . Association for Computing Machinery, New

York, NY, Article 56, 8 pages. DOI: https://doi.org/10.1145/3240765.3240801

55] Yaqi Zhang, Nathan Zhang, Tian Zhao, Matt Vilim, Muhammad Shahbaz, and Kunle Olukotun. 2021. SARA: Scaling

a reconfigurable dataflow accelerator. In Proceedings of the ACM/IEEE International Symposium on Computer Archi-

tecture (ISCA’21) . IEEE, New York, NY, 1041–1054. DOI: https://doi.org/10.1109/ISCA52012.2021.00085

56] Zhiru Zhang and Bin Liu. 2013. SDC-based modulo scheduling for pipeline synthesis. In 2013 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD’13) . IEEE, New York, NY, 211–218. DOI: https://doi.org/10.1109/ICCAD.

2013.6691121

57] Wei Zuo, Yun Liang, Peng Li, Kyle Rupnow, Deming Chen, and Jason Cong. 2013. Improving high level synthesis

optimization opportunity through polyhedral transformations. In Proceedings of the ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays (FPGA’13) . Association for Computing Machinery, New York, NY, 9–18.
eceived 1 June 2022; revised 2 November 2022; accepted 7 November 2022

CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 26. Publication date: March 2023.

https://doi.org/10.1145/3494534
https://doi.org/10.1109/HPCA51647.2021.00042
https://doi.org/10.1145/3431920.3439292
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://doi.org/10.1145/3240765.3240801
https://doi.org/10.1109/ISCA52012.2021.00085
https://doi.org/10.1109/ICCAD.2013.6691121
https://doi.org/10.1109/ICCAD.2013.6691121

	1 INTRODUCTION
	2 THE UNIFIED BUFFER ABSTRACTION
	3 PHYSICAL UNIFIED BUFFER
	3.1 Dual-Port SRAM
	3.2 Wide-Fetch, Single-Port SRAM

	4 COMPILER DESIGN
	4.1 Scheduling
	4.2 Buffer Extraction
	4.3 Physical Buffer Mapping

	5 EVALUATION METHODOLOGY
	6 EVALUATION
	6.1 Backend Portability
	6.2 Hardware Optimization Case Study
	6.3 Evaluation of Compiler Optimizations
	6.4 System Level Evaluation

	7 RELATED WORK
	8 CONCLUSION
	REFERENCESendgraf

