
20e

Why New Programming Languages for Simulation?

GILBERT LOUIS BERNSTEIN
Stanford University
and
FREDRIK KJOLSTAD
Massachusetts Institute of Technology

Writing highly performant simulations requires a lot of human effort to
optimize for an increasingly diverse set of hardware platforms, such as
multi-core CPUs, GPUs, and distributed machines. Since these optimiza-
tions cut across both the design of geometric data structures and numerical
linear algebra, code reusability and portability is frequently sacrificed for
performance.

We believe the key to make simulation programmers more productive
at developing portable and performant code is to introduce new linguis-
tic abstractions, as in rendering and image processing. In this perspective,
we distill the core ideas from our two languages, Ebb and Simit, that are
published in this journal.

CCS Concepts: � Computing methodologies → Simulation languages

Additional Key Words and Phrases: Physical simulation languages, perfor-
mance, compilation

ACM Reference Format:

Gilbert Louis Bernstein and Fredrik Kjolstad. 2016. Why new programming
languages for simulation? ACM Trans. Graph. 35, 2, Article 20e (May 2016),
3 pages.
DOI: http://dx.doi.org/10.1145/2930661

Simulations are complicated, performance-critical applications that
combine sophisticated computer science data structures with ad-
vanced mathematical computation. Best practice suggests us-
ing optimized linear algebra libraries, yet programmers of high-
performance simulations invariably abandon this ideal in order to
optimize computation around application data structures. Getting
good performance requires a lot of human effort to manage data
layout, vectorize, and parallelize code. And the situation is getting
worse. High-performance systems in the near future will need to

Authors’ addresses: G. L. Bernstein, Gates Computer Science Building,
353 Serra Mall, Stanford, CA 94305; email: gilbert@gilbertbernstein.com;
F. Kjolstad, MIT CSAIL, 32 Vassar St 32-G778, Cambridge, MA 02139;
email: fred@csail.mit.edu.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2016 ACM 0730-0301/2016/05-ART20e $15.00

DOI: http://dx.doi.org/10.1145/2930661

support concurrent execution on GPUs, multicore CPUs, a host of
new architectures, and across distributed systems.

In response to similar trends, graphics researchers have proposed
new programming languages to manage and abstract away from
hardware complexity. Renderman [Upstill 1989], GPU Shading
Languages, Cuda [Nvidia 2008], and more recently Halide [Ragan-
Kelley et al. 2013] and Darkroom [Hegarty et al. 2014] are excellent
examples. These languages promise considerable reductions in
programmer effort, as reflected both by the amount of code that
must be written and the degree to which programmers must opti-
mize for specific hardware. We believe simulation is now primed
to move to such programming languages. Although simulation is a
complicated domain, we are starting to understand how to represent
a large class of simulations with simple, general, and flexible high
level programming language concepts built on solid foundations.
We believe the ideas behind the relational algebra and modern
databases have direct relevance to simulation, and we expect to see
similar benefits to those the database community has accrued.

In these proceedings, two such languages are presented:
Ebb [Bernstein et al. 2016] and Simit [Kjolstad et al. 2016]. These
languages were developed independently by two separate groups
centered at Stanford and MIT, and we believe they are first steps
in a larger roadmap. We will let the articles speak for themselves
on the strengths of their different operators and data structures.
However, we encourage readers to note the common foundations
we will lay out and join us in exploring a fascinating new research
direction.

Linguistic Abstractions

Traditionally, stand-alone languages were developed for specific
domains (e.g., MATLAB [2014] and Renderman). More recently,
languages such as Halide and shading languages have been provided
as libraries with language semantics and compiler support (some-
times called embedded languages). Ebb and Simit are also libraries
with language semantics, which enable them to simultaneously in-
crease performance and productivity while also being portable. The
availability of the LLVM compiler infrastructure has dramatically
reduced the cost of developing such libraries, and for users they
offer a similar experience to using traditional libraries. We believe
this design provides a much more direct path to adoption, and simu-
lation packages can be built on top of such libraries to get the above
benefits.

This is a broader trend in computer science. Ebb and Simit share
ideas and structure with languages developed in other fields. Graph
processing frameworks for big data (e.g., GraphLab [Low et al.
2010] and Ligra [Shun and Blelloch 2013]) use graph data models,
and machine learning frameworks (e.g., Tensorflow [Abadi et al.
2016] and Torch [Collobert et al. 2016]) provide multidimensional
arrays and mathematical operators. Perhaps most interestingly, these
languages, as well as Simit and Ebb, draw on a rich history of

ACM Transactions on Graphics, Vol. 35, No. 2, Article 20e, Publication date: May 2016.

20e:2 • G. L. Bernstein and F. Kjolstad

data-parallel programming exemplified by SQL and the relational
algebra in databases [Codd 1970].

Ebb and Simit

Ebb and Simit are both inspired by the database literature, represent-
ing mesh data as interconnected sets, operated on by set-at-a-time
operators (e.g., Ebb’s kernels and Simit’s assembly and global linear
algebra). This captures the abundant data parallelism in simulation
programs. Furthermore, the use of set relationships, interpreted as
relational keys or edge sets, exposes locality in the simulation data
that can be used to efficiently operate on it in parallel. While the
two languages differ on the manifestation of these ideas, we are in
strong agreement about the value of these abstractions.

Besides data abstractions, the two systems make a number of sim-
ilar implementation choices. Both demonstrate performance porta-
bility with initial CPU and GPU implementations, encode irregular
sparse matrices using the block compressed row storage format,
and achieve competitive performance to hand-tuned code despite
not yet having put much effort into performance engineering (e.g.,
no vectorization and no multithreading). Further, both systems are
packaged as libraries with online compilers, allowing them to be
mixed freely with other libraries and code (e.g., collision detection
libraries). In addition, both languages provide support for calling
out to external libraries written in C/C++ during execution (e.g.,
external solvers). As a result, both systems can be readily incor-
porated into existing simulation software, such as libraries used in
game development, special effects, and engineering.

However, Ebb and Simit exploit different points in the design
space of simulation languages. This results in simulations written
in the two languages adopting different architectures and different
divisions of responsibility between programmers and the compiler.
On the one hand, Ebb is focused on the description of a wide
variety of data structures out of primitives with high-performance
guarantees. This leads to a user programmable geometric domain
library layer, which does not exist in Simit. On the other hand, Simit
is focused on the local/global distinction between local assembly
kernels and high-performance global linear algebra. This leads to a
global linear algebra language, which does not exist in Ebb.

These distinctions create different optimization opportunities and
stories for Ebb and Simit. Simit’s global linear algebra model im-
mediately presents opportunities for a compiler to fuse, reorder and
otherwise automate the optimization of linear algebra. While simi-
lar automatic transformations may be possible in Ebb, they will be
challenging to discover and reason about in the kernel language.
Ebb’s data modeling primitives let programmers carefully control
and optimize data representations inside domain libraries. While
Simit may be able to expose similar controls to programmers, it
will be challenging to ensure that such controls interact well with
Simit’s linear algebra representation and optimization.

Conclusion

The programming models presented in these articles are two early
steps that explore some of what we believe are the most promising
directions for future simulation application development. They are
far from the last word on the subject. And with increasing complex-
ity and diversity in parallel hardware, we expect the need for similar
or complementary linguistic abstractions to only increase.

This vision of languages for writing simulations requires more
tools, support for a broader range of computational patterns, opti-
mizations and parallel machines. More research is needed:

(1) As more computation moves into low-cost data centers, the
ability to cheaply port and scale simulations to distributed ma-
chines will become more important.

(2) Global operations like linear algebra expose new opportunities
for code optimization.

(3) Abstracting data storage exposes new opportunities and choices
for whole program layout optimization.

(4) New linguistic and computational strategies are needed
to portably express, parallelize, and execute costly sub-
computations like adaptive remeshing, collision detection, and
solvers, or else these quickly become bottlenecks.

(5) Simulation languages open up new opportunities for trans-
parent fault tolerance schemes based on job replication or
recomputation.

(6) Simulation languages create the opportunity to diagnose and
fix performance and correctness problems in new and powerful
ways.

(7) High-performance simulation libraries/systems are frequently
forced to trade off between good software engineering and
performance; new languages for writing these systems present
opportunities to revisit these trade-offs.

With these challenges addressed, we envision the adoption of
new programming languages that enable programmers to create
efficient, portable, and modular multiphysics simulations.

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, and others. 2016. TensorFlow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467
(2016).

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary DeVito,
Matthew Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL
for physical simluation on CPUs and GPUs. ACM Trans. Graph. 35, 2,
Article 21 (April 2016), 21:1–21:12. http://doi.acm.org/10.1145/2892632.

Edgar F. Codd. 1970. A relational model of data for large shared data banks.
Commun. ACM 13, 6 (1970), 377–387.

Ronan Collobert, Clement Farabet, Koray Kavukcuoglu, Soumith Chintala,
and others. 2016. torch: A Scientific Computing Framework for LUAJIT.
Retrieved from http://torch.ch.

CUDA Nvidia. 2008. Programming guide. (2008).
James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley,

Noy Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat
Hanrahan. 2014. Darkroom: Compiling high-level image processing code
into hardware pipelines. ACM Trans. Graph. 33, Article 144 (July 2014),
144:1–144:11. http://doi.acm.org/10.1145/2601097.2601174.

Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David I. W. Levin,
Shinjiro Sueda, Desai Chen, Etienne Vouga, Danny M. Kaufman, Gurtej
Kanwar, Wojciech Matusik, and Saman Amarasinghe. 2016. Simit: A
language for physical simulation. ACM Trans. Graph. 35, 2, Article 20
(April 2016), 20:1–20:21. http://doi.acm.org/10.1145/2866569.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. 2010. GraphLab: A new parallel
framework for machine learning. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence.

MATLAB. 2014. Version 8.3.0 (R2014a). The MathWorks Inc., Natick,
Massachusetts.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. 2013. Halide: A language

ACM Transactions on Graphics, Vol. 35, No. 2, Article 20e, Publication date: May 2016.

http://doi.acm.org/10.1145/2892632
http://doi.acm.org/10.1145/2601097.2601174
http://doi.acm.org/10.1145/2866569

Why New Programming Languages for Simulation? • 20e:3

and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. ACM SIGPLAN Notices 48, 6 (2013),
519–530.

Julian Shun and Guy E. Blelloch. 2013. Ligra: A lightweight graph pro-
cessing framework for shared memory. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP’13). ACM, New York, NY, 135–146. DOI:http://
dx.doi.org/10.1145/2442516.2442530

Steve Upstill. 1989. RenderMan Companion: A Programmer’s Guide to
Realistic Computer Graphics. Addison-Wesley Longman Publishing Co.

Received April 2016; accepted April 2016

ACM Transactions on Graphics, Vol. 35, No. 2, Article 20e, Publication date: May 2016.

http://dx.doi.org/10.1145/2442516.2442530
http://dx.doi.org/10.1145/2442516.2442530

